Page 381 - Advances in Biomechanics and Tissue Regeneration
P. 381
378 18. CARTILAGE REGENERATION AND TISSUE ENGINEERING
[107] N.C. Hunt, L.M. Grover, Cell encapsulation using biopolymer gels for regenerative medicine, Biotechnol. Lett. 32 (6) (2010) 733–742.
[108] C. Chung, I.E. Erickson, R.L. Mauck, Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels, Tissue Eng.
Part A 14 (7) (2008) 1121–1131.
[109] C. Chung, J.A. Burdick, Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis, Tissue
Eng. Part A 15 (2) (2009) 243–254.
[110] E. Amann, P. Wolff, E. Breel, M. van Griensven, E.R. Balmayor, Hyaluronic acid facilitates chondrogenesis and matrix deposition of human
adipose derived mesenchymal stem cells and human chondrocytes co-cultures, Acta Biomater. 52 (2017) 130–144.
[111] X. Lin, W. Wang, W. Zhang, Z. Zhang, G. Zhou, Y. Cao, et al., Hyaluronic acid coating enhances biocompatibility of nonwoven PGA scaffold
and cartilage formation, Tissue Eng. Part C Methods 23 (2) (2017) 86–97.
[112] W.Y. Xia, W. Liu, L. Cui, Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds, J Biomed Mater Res B Appl Bio-
mater 71B (2) (2004) 373–380.
[113] R.A. Muzzarelli, F. Greco, A. Busilacchi, V. Sollazzo, A. Gigante, Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for car-
tilage regeneration: a review, Carbohydr. Polym. 89 (3) (2012) 723–739.
[114] M. Sancho-Tello, S. Martorell, M. Mata Roig, L. Milián, M.A. Gámiz-González, J.L. Gómez Ribelles, et al., Human platelet-rich plasma
improves the nesting and differentiation of human chondrocytes cultured in stabilized porous chitosan scaffolds, J. Tissue Eng. 8 (2017) 1–6.
[115] M.B. Gugjoo, G.T. Amarpal, H.P. Sharma, P.K. Aithal, Cartilage tissue engineering: role of mesenchymal stem cells along with growth factors &
scaffolds, Indian J. Med. Res. 144 (3) (2016) 339–347.
[116] S. Poveda-Reyes, T. Gamboa-Martínez, S. Manzano, M.H. Doweidar, J.L. Gómez Ribelles, I. Ochoa, et al., Engineering interpenetrating poly-
mer networks of poly(2-hydroxyethyl acrylate) as ex vivo platforms for articular cartilage regeneration, Int. J. Polym. Mater. 64 (14) (2015)
745–754.
[117] S. Martinez-Diaz, N. Garcia-Giralt, M. Lebourg, In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits,
Am. J. Sports Med. 38 (3) (2010) 509–519.
[118] P. Duan, Z. Pan, L. Cao, The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits,
J. Biomed. Mater. Res. A 102 (1) (2014) 180–192.
[119] J. Shi, X. Zhang, X. Zeng, J. Zhu, Y. Pi, C. Zhou, et al., One-step articular cartilage repair: combination of in situ bone marrow stem cells with
cell-free poly(L-lactic-co-glycolic acid) scaffold in a rabbit model, Orthopedics 35 (5) (2012) e665–e671.
[120] V. Kesireddy, J. Ringe, M. Endres, S. Stich, D. Klose, R. Bodmeier, et al., Development of growth factor/insulin release for articular cartilage
regeneration in PLGA scaffolds, Tissue Eng. 12 (4) (2006) 1073.
[121] S.C. Neves, L.S. Moreira Teixeira, L. Moroni, Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair, Biomaterials 32 (4)
(2011) 1068–1079.
[122] C. Vinatier, D. Mrugala, C. Jorgensen, J. Guicheux, D. Noël, Cartilage engineering: a crucial combination of cells, biomaterials and biofactors,
Trends Biotechnol. 27 (5) (2009) 307–314.
[123] E. Augustyniak, T. Trzeciak, M. Richter, J. Kaczmarczyk, W. Suchorska, The role of growth factors in stem cell-directed chondrogenesis: a real
hope for damaged cartilage regeneration, Int. Orthop. 39 (5) (2015) 995–1003.
[124] W. Wang, D. Rigueur, K.M. Lyons, TGFβ signaling in cartilage development and maintenance, Birth Defects Res. C Embryo Today 102 (1)
(2014) 37–51.
[125] C. Scotti, B. Tonnarelli, A. Papadimitropoulos, Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a
paradigm for developmental engineering, Proc. Natl. Acad. Sci. U. S. A. 107 (16) (2010) 7251–7256.
[126] Z.H. Deng, Y.S. Li, X. Gao, G.H. Lei, J. Huard, Bone morphogenetic proteins for articular cartilage regeneration, Osteoarthr. Cartil. 26 (9) (2018)
1153–1161.
[127] T. Grunder, C. Gaissmaier, J. Fritz, Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chon-
drocytes embedded in alginate beads, Osteoarthr. Cartil. 12 (7) (2004) 559–567.
[128] C.H. Lu, T.S. Yeh, C.L. Yeh, Regenerating cartilages by engineered ASCs: prolonged TGF-beta3/BMP-6 expression improved articular carti-
lage formation and restored zonal structure, Mol. Ther. 22 (1) (2014) 186–195.
[129] I. Sekiya, B.L. Larson, J.T. Vuoristo, R.L. Reger, D.J. Prockop, Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human
adult stem cells from bone marrow stroma, Cell Tissue Res. 320 (2) (2005) 269–276.
[130] M. Fujioka-Kobayashi, M. Abd El Raouf, N. Saulacic, E. Kobayashi, Y. Zhang, B. Schaller, et al., Superior bone-inducing potential of rhBMP9
compared to rhBMP2, J. Biomed. Mater. Res. A 106 (6) (2018) 1561–1574.
[131] L. Huang, L. Yi, C. Zhang, Y. He, L. Zhou, Y. Liu, et al., Synergistic effects of FGF-18 and TGF-β3 on the chondrogenesis of human adipose-
derived mesenchymal stem cells in the pellet culture, Stem Cells Int. (2018) (2018) 7139485.
[132] C. Shu, S.M. Smith, C.B. Little, J. Melrose, Use of FGF-2 and FGF-18 to direct bone marrow stromal stem cells to chondrogenic and osteogenic
lineages, Future Sci. OA 2 (4) (2016) FSO142.
[133] T. Pizzute, J. Li, Y. Zhang, M.E. Davis, M. Pei, Fibroblast growth factor ligand dependent proliferation and chondrogenic differentiation of
synovium-derived stem cells and concomitant adaptation of Wnt/mitogen-activated protein kinase signals, Tissue Eng. Part A 22 (15–16)
(2016) 1036–1046.
[134] L.C. Davies, E.J. Blain, S.J. Gilbert, B. Caterson, V.C. Duance, The potential of IGF-1 and TGFb1 for promoting ‘adult’ articular cartilage repair:
an in vitro study, Tissue Eng. Part A 14 (2008) 1251–1261.
[135] Y. Ikeda, M. Sakaue, R. Chijimatsu, D.A. Hart, H. Otsubo, K. Shimomura, et al., IGF-1 gene transfer to human synovial MSCs promotes their
chondrogenic differentiation potential without induction of the hypertrophic phenotype, Stem Cells Int. 2017 (2017) 5804147.
[136] Z. Zhang, L. Li, W. Yang, Y. Cao, Y. Shi, X. Li, et al., The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair
of full-thickness articular cartilage defects in rabbits, Osteoarthr. Cartil. 25 (2) (2017) 309–320.
[137] Y. Qian, Q. Han, W. Chen, J. Song, X. Zhao, Y. Ouyang, et al., Platelet-rich plasma derived growth factors contribute to stem cell differentiation
in musculoskeletal regeneration, Front. Chem. 5 (2017) 89.
[138] J. Van Den Dolder, R. Mooren, A.P.G. Vloon, Platelet-rich plasma: quantification of growth factor levels and the effect on growth and differ-
entiation of rat bone marrow cells, Tissue Eng. 12 (11) (2006) 3067–3073.
II. MECHANOBIOLOGY AND TISSUE REGENERATION