Page 67 - Advances in Biomechanics and Tissue Regeneration
P. 67

REFERENCES                                           61

           [41] F. Migliavacca, L. Petrini, M. Colombo, F. Auricchio, R. Pietrabissa, Mechanical behavior of coronary stents investigated through the finite ele-
               ment method, J. Biomech. 35 (2002) 803–811.
           [42] F. Etave, G. Finet, M. Boivin, J.C. Boyer, G. Rioufol, G. Thollet, Mechanical properties of coronary stents determined by using finite element
               analysis, J. Biomech. 34 (2001) 1065–1075.
           [43] L. Feo, D.M. Schaffzin, Colonic stents: the modern treatment of colonic obstruction, Adv. Ther. 28 (2011) 73–86.
           [44] G. Costamagna, A. Tringali, J. Spicak, M. Mutignani, J. Shaw, A. Roy, E. Johnsson, E.G.H. De Moura, S. Cheng, T. Ponchon,
               M. Bittinger, H. Messmann, H. Neuhaus, B. Schumacher, R. Laugier, J. Saarnio, F.I. Ariqueta, Treatment of malignant gastroduodenal obstruc-
               tion with a nitinol self-expanding metal stent: an international prospective multicentre registry, Dig. Liver Dis. 44 (2012) 37–43.
           [45] Y. Hori, I. Naitoh, K. Hayashi, T. Ban, M. Natsume, F. Okumura, T. Nakazawa, H. Takada, A. Hirano, N. Jinno, S. Togawa, T. Ando,
               H. Kataoka, T. Joh, Predictors of outcomes in patients undergoing covered and uncovered self-expandable metal stent placement for malignant
               gastric outlet obstruction: a multicenter study, Gastrointest. Endosc. 85 (2017) 340.
           [46] J. Rayhanabad, M.A. Abbas, Long-term outcome of endoscopic colorectal stenting for malignant and benign disease, Am. Surg. 75 (2009)
               897–900.
           [47] N. Suzuki, B.P. Saunders, S. Thomas-Gibson, C. Akle, M. Marshall, S. Halligan, Colorectal stenting for malignant and benign disease: outcomes
               in colorectal stenting, Dis. Colon Rectum 47 (2004) 1201–1207.
           [48] S. Domingo, S. Pu  ertolas, L. Gracia-Villa, J.A. Pu  ertolas, Mechanical comparative analysis of stents for colorectal obstruction, Minim. Invasive
               Ther. Allied Technol. 16 (2007) 126–136.
           [49] F. Auricchio, R.L. Taylor, J. Lubliner, Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior, Comput.
               Methods Appl. Mech. Eng. 146 (1997) 281–312.
           [50] J. Arghavani, F. Auricchio, R. Naghdabadi, A finite strain kinematic hardening constitutive model based on Hencky strain: general framework,
               solution algorithm and application to shape memory alloys, Int. J. Plasticity 27 (2011) 940–961.
           [51] F. Iannaccone, N. Debusschere, S. De Bock, M. De Beule, D. Van Loo, F. Vermassen, P. Segers, B. Verhegghe, The influence of vascular anatomy
               on carotid artery stenting: a parametric study for damage assessment, J. Biomech. 47 (2014) 890–898.
           [52] S. Puertolas, D. Navallas, A. Herrera, E. Lopez, J. Millastre, E. Ibarz, S. Gabarre, J.A. Puertolas, L. Gracia, A methodology for the customized
               design of colonic stents based on a parametric model, J. Mech. Behav. Biomed. Mater. 71 (2017) 250–261.
           [53] S. Domingo, S. Puertolas, L. Gracia-Villa, M. Mainar, J. Uson, J.A. Puertolas, Design, manufacture and evaluation of a NiTi stent for colon
               obstruction, Biomed. Mater. Eng. 15 (2005) 357–365.
           [54] S. Pu  ertolas, E. Bajador, J.A. Pu  ertolas, E. López, E. Ibarz, L. Gracia, A. Herrera, Study of the behavior of a bell-shaped colonic self-expandable
               NiTi stent under peristaltic movements, Biomed. Res. Int. 2013 (2013) 370582.
           [55] pyFormex, Available: www.nongnu.org/pyformex/.
           [56] Siemens, I-Deas - NX11, Available: http://www.plm.automation.siemens.com/.
           [57] F. Auricchio, A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model, Int. J. Plast. 17 (2001) 971–990.
           [58] Dassault Systèmes, Available: http://www.3ds.com/.












































                                                       I. BIOMECHANICS
   62   63   64   65   66   67   68   69   70   71   72