Page 80 - Advances in Biomechanics and Tissue Regeneration
P. 80

4.3 MECHANICAL CHARACTERIZATION AND MODELING OF THE AORTA                 75

              Two ODFs were used to model for the incorporation of anisotropy

           • One of the ODFs applied most frequently is 3D bi-π-periodic von Mises ODF for the incorporation of anisotropy in a
              microsphere-based model with application to the modeling of the thoracic aorta [7]. This function is expressed as
                                                      ρðθÞ¼ ρ ðθÞ + ρ ðθÞ,                                  (4.26)
                                                            1
                                                                   2
           where θ ¼ arccosðm   rÞ is the so-called mismatch angle and m the preferred mean orientation of the collagen distri-
           bution, and
                                                       r ffiffiffiffiffi
                                                ρ ðθÞ¼ 4  2π       p ffiffiffiffiffi  ,                               (4.27)
                                                         b expðb½cosð2θÞ +1ŠÞ
                                                 i
                                                               erfið 2bÞ
           where the positive concentration parameter b constitutes a measure of the degree of anisotropy. Moreover, erfi(x) ¼
            i erf(x) denotes the imaginary error function. Finally, c 1coll and c 2coll are stress dimensional and dimensionless
           material parameters, respectively. A total of five elastic parameters (μ, k 1 , k 2 , κ, and θ) should be fitted.
           • We also used the Bingham ODF [41] initially proposed by Alastru  e et al. [36] for the incorporation of anisotropy in a
              microsphere-based model with application to the modeling of the thoracic aorta and presented in Eq. (4.10).


           4.3.6 Results on Modeling the Porcine Carotid Artery
              The results of the fitting to the SEFs are shown in Table 4.3. Our results on the descriptive capacity of SEF models
           indicated that the worst fitting was with the HGO SEF, showing a mean RMSE of ε ¼ 0.2668. On the contrary, the best
           TABLE 4.3 Material Constants Obtained for the DTA Curves

                                                          HGO model
           Specimen          μ               k 1             k 2             θ               R 2             ε
           I                 0.0531          0.0051          16.4048         63.31           0.9382          0.1458
           II                0.001           0.0175           1.7351         80.15           0.6592          0.3459
           III               0.0145          0.0117           3.0238         78.11           0.8329          0.2626
           IV                0.0314          0.01363          8.5495         72.82           0.7947          0.3048
           V                 0.0263          0.0134          11.2069         79.88           0.8750          0.2486
           VI                0.0435          0.0037          93.9559         57.43           0.8295          0.2316
           VIIa              0.0129          0.0038           6.7227         67.58           0.6670          0.4269
           VIIb              0.0010          0.0150           2.7861         79.14           0.2827          0.1686
           Mean              0.0229          0.0104          18.0481         72.3025         0.7349          0.2668
           SD                0.01908         0.0054          31.0638          8.6528         0.2063          0.0919
                                                          GOH model
           Specimen        μ            k 1           k 2           κ            θ             R 2           ε
           I               0.0262       0.0117        26.06         0.1125       59.83         0.9415        0.1422
           II              0.0054       0.0654         7.6320       0.2726       20            0.6858        0.3431
           III             0.0078       0.0947         4.6290       0.2885       1.5           0.8680        0.1701
           IV              0.0146       0.1906        11.1502       0.2848       17.69         0.8200        0.2875
           V               0.001        0.3552         0.0014       0.2742       74            0.8840        0.2256
           VI              0.0210       0.0862        660.0371      0.2712       0.0           0.8494        0.2139
           VIIa            0.0064       0.0258        18.9642       0.2531       0.0           0.6668        0.4268
           VIIb            0.0025       0.1035         6.7001       0.2895       0.0           0.8558        0.2663
           Mean            0.0106       0.1166        91.8967       0.2558       21.6275       0.8214        0.2594
           SD              0.0090       0.1107        229.7130      0.0590       29.3472       0.0961        0.0931
                                                                                                          Continued
                                                       I. BIOMECHANICS
   75   76   77   78   79   80   81   82   83   84   85