Page 83 - Advances in Biomechanics and Tissue Regeneration
P. 83

78                       4. MECHANICAL AND MICROSTRUCTURAL BEHAVIOR OF VASCULAR TISSUE

           [24] G. Sommer, P. Regitnig, L. K€ oltringer, G.A. Holzapfel, Biaxial mechanical properties of intact and layer-dissected human carotid arteries at
               physiological and supra-physiological loadings, Am. J. Physiol. Heart Circ. Physiol. 298 (2010) H898–H912.
           [25] F.H. Silver, P.B. Snowhill, D.J. Foran, Mechanical behavior of vessel wall: a comparative study of aorta, vena cava, and carotid artery, Ann.
               Biomed. Eng. 31 (2003) 793–803.
           [26] D.M. Ebenstein, D. Coughlin, J. Chapman, C. Li, L.A. Pruitt, Nanomechanical properties of calcification, fibrous tissue, and hematoma from
               atherosclerotic plaques, J. Biomed. Mater. Res. A 91 (2009) 1028–1037.
           [27] P. Sáez, A. García, E. Peña, T.C. Gasser, M.A. Martínez, Microstructural quantification of collagen fiber orientations and its integration in con-
               stitutive modeling of the porcine carotid artery, Acta Biomater. 33 (2016) 183–193.
           [28] P.B. Canham, H.M. Finlay, D.R. Boughner, Contrasting structure of the saphenous vein and internal mammary artery used as coronary bypass
               vessels, Cardiovasc. Res. 34 (1997) 557–567.
           [29] P.B. Canham, H.M. Finlay, J.G. Dixon, D.R. Boughner, A. Chen, Measurements from light and polarised light microscopy of human coronary
               arteries fixed at distending pressure, Cardiovasc. Res. 23 (1989) 973–982.
           [30] J.F. Smith, P.B. Canham, J. Starkey, Orientation of collagen in the tunica adventitia of the human cerebral artery measured with polarized light
               and the universal stage, J. Ultrastruct. Res. 77 (1981) 133–145.
           [31] J.D. Humphrey, K.R. Rajagopal, A constrained mixture model for arterial adaptations to a sustained step change in blood flow, Biomech. Model
               Mechanobiol. 2 (2003) 109–126.
           [32] C. Bellin, J. Ferruzzi, S. Roccabianca, E.S. Di Martino, J.D. Humphrey, A microstructurally motivated model of arterial wall mechanics with
               mechanobiological implications, Ann. Biomed. Eng. 42 (2013) 488–502.
           [33] G.A. Holzapfel, T.C. Gasser, M. Stadler, A structural model for the viscoelastic behaviour of arterial walls: continuum formulation and finite
               element analysis, Eur. J. Mech. A/Solids 21 (2002) 441–463.
           [34] G.A. Holzapfel, C.T. Gasser, G. Sommer, P. Regitnig, Determination of the layer-specific mechanical properties of human coronary arteries with
               non-atherosclerotic intimal thickening, and related constitutive modelling, Am. J. Physiol. Heart. Circ. Physiol. 289 (2005) H2048–H2058.
           [35] P. Sáez, E. Peña, M.A. Martínez, A structural approach including the behavior of collagen cross-links to model patient-specific human carotid
               arteries, Ann. Biomed. Eng. 42 (2014) 1158–1169.
           [36] V. Alastru  e, P. Saez, M.A. Martínez, M. Doblar  e, On the use of Bingham statistical distribution in microsphere-based constitutive models for
               arterial tissue, Mech. Res. Commun. 37 (2010) 700–706.
           [37] A.J.M. Spencer, Theory of invariants, in: Continuum Physics, Academic Press, New York, NY, 1971, pp. 239–253.
           [38] N. Gundiah, M.B. Ratcliffe, L.A. Pruitt, The biomechanics of arterial elastin, J. Mech. Behav. Biomed. Mater. 2 (2009) 288–296.
           [39] M.A. Lillie, R.E. Shadwick, J.M. Gosline, Mechanical anisotropy of inflated elastic tissue from the pig aorta, J. Biomech. 43 (2010) 2070–2078.
           [40] M.K. O’Connell, S. Murthy, S. Phan, C. Xu, J. Buchanan, R. Spilker, R.L. Dalman, C.K. Zarins, W. Denk, C.A. Taylor, The three-dimensional
               micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging, Matrix Biol. 27 (2008)
               171–181.
           [41] C. Bingham, An antipodally symmetric distribution on the sphere, Ann. Stat. 2 (1974) 1201–1225.
           [42] D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11 (1963) 431–441.
           [43] T.E. Carew, R.N. Vaishnav, D.J. Patel, Compressibility of the arterial wall, Circ. Res. 23 (1968) 61–86.
           [44] J. Tong, T. Cohnert, P. Regitnig, G.A. Holzapfel, Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered
               wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling, Eur. J. Vasc. Endovasc. Surg. 42 (2011) 207–219.
           [45] H. Demiray, A note on the elasticity of soft biological tissues, J. Biomech. 5 (1972) 309–311.
           [46] A.J. Schriefl, G. Zeindlinger, D.M. Pierce, P. Regitnig, G.A. Holzapfel, Determination of the layer-specific distributed collagen fiber orientations
               in human thoracic and abdominal aortas and common iliac arteries, J. R. Soc. Interface 9 (2012) 1275–1286.
           [47] S. Zeinali-Davarani, J. Choi, S. Baek, On parameter estimation for biaxial mechanical behavior of arteries, J. Biomech. 42 (2009) 524–530.
           [48] R. Rezakhaniha, A. Agianniotis, J.T.C. Schrauwen, A. Griffa, D. Sage, C.V.C. Bouten, F.N. van de Vosse, M. Unser, N. Stergiopulos, Experimental
               investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy, Biomech. Model. Mechan-
               obiol. 11 (2012) 461–473.































                                                       I. BIOMECHANICS
   78   79   80   81   82   83   84   85   86   87   88