Page 190 - Advances in Eco-Fuels for a Sustainable Environment
P. 190
154 Advances in Eco-Fuels for a Sustainable Environment
[19] Meredith RJ. Engineers’ handbook of industrial microwave heating. London: IEE; 1998.
p. 382. https://doi.org/10.1049/PBPO025E.
[20] Men endez JA, Arenillas A, Fidalgo B, Ferna ´ndez Y, Zubizarreta L, Calvo EG, et al.
Microwave heating processes involving carbon materials. Fuel Process Technol
2010;91:1–8. https://doi.org/10.1016/j.fuproc.2009.08.021.
[21] Basics Of Microwave j Micro Denshi Co., ltd, http://www.microdenshi.co.jp/en/
microwave.
[22] Lamb D, Verlinde J. Physics and chemistry of clouds; 2011. 1–584 p.
[23] Srilakshmi B. Food science. 3rd ed. New Age International; 2003.
´
[24] Ferna ´ndez Y, Arenillas A, Angel Men endez J. Microwave heating applied to pyrolysis.
In: Adv Induction Microw Heat Miner Orga Nic Mater. Instituto Nacional del Carbo ´n
(CSIC); 2011. p. 721–52.
[25] Morgan HM, Bu Q, Liang J, Liu Y, Mao H, Shi A, et al. A review of catalytic microwave
pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresour
Technol 2017;230:112–21. https://doi.org/10.1016/j.biortech.2017.01.059.
[26] Huang YF, Chiueh PT, Kuan WH, Lo SL. Microwave pyrolysis of lignocellulosic bio-
mass: heating performance and reaction kinetics. Energy 2016;100:137–44. https://doi.
org/10.1016/j.energy.2016.01.088.
[27] Yin C. Microwave-assisted pyrolysis of biomass for liquid biofuels production. Bioresour
Technol 2012;120:273–84. https://doi.org/10.1016/j.biortech.2012.06.016.
[28] Zhang X, Hayward DO. Applications of microwave dielectric heating in environment-
related heterogeneous gas-phase catalytic systems. Inorg Chim Acta 2006;359:
3421–33. https://doi.org/10.1016/j.ica.2006.01.037.
[29] Men endez JA, Domı ´nguez A, Inguanzo M, Pis JJ. Microwave pyrolysis of sewage sludge:
analysis of the gas fraction. J Anal Appl Pyrolysis 2004;71:657–67. https://doi.org/
10.1016/j.jaap.2003.09.003.
[30] Dominguez A, Fernandez Y, Fidalgo B, Pis JJ, Menendez JA. Bio-syngas production
with low concentrations of CO 2 and CH 4 from microwave-induced pyrolysis of wet
and dried sewage sludge. Chemosphere 2008;70:397–403. https://doi.org/10.1016/j.
chemosphere.2007.06.075.
[31] Minkova V, Razvigorova M, Bjornbom E, Zanzi R, Budinova T, Petrov N. Effect of
water vapour and biomass nature on the yield and quality of the pyrolysis products from
biomass. Fuel Process Technol 2001;70:53–61. https://doi.org/10.1016/S0378-3820(00)
00153-3.
[32] Allan GG, Krieger BB, Work DW. Dielectric loss microwave degradation of polymers:
cellulose. J Appl Polym Sci 1980;25:1839–59. https://doi.org/10.1002/app.1980.
070250904.
[33] Morin M, P ecate S, H emati M, Kara Y. Pyrolysis of biomass in a batch fluidized bed reac-
tor: effect of the pyrolysis conditions and the nature of the biomass on the physicochemical
properties and the reactivity of char. J Anal Appl Pyrolysis 2016;122:511–23.
[34] Onay O, Kockar OM. Slow, fast and flash pyrolysis of rapeseed. Renew Energy
2003;28:2417–33.
[35] Marcilla A, Catala ´ L, Garcı ´a-Quesada JC, Vald es FJ, Herna ´ndez MR. A review of ther-
mochemical conversion of microalgae. Renew Sust Energ Rev 2013;27:11–9. https://doi.
org/10.1016/j.rser.2013.06.032.
[36] Miandad R, Nizami AS, Rehan M, Barakat MA, Khan MI, Mustafa A, et al. Influence of
temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid
oil. Waste Manag 2016;58:250–9. https://doi.org/10.1016/j.wasman.2016.09.023.