Page 189 - Advances in Eco-Fuels for a Sustainable Environment
P. 189
Microwave-assisted fast pyrolysis of hazardous waste engine oil into green fuels 153
the grant for successful completion of this project (Project No. DST/SB/EMEQ-251). The
authors also acknowledge the Director, National Institute of Technology, Tiruchirappalli, Tam-
ilnadu, India for extending the facility to carry out this experimentation.
References
¸
€
[1] Ucar S, Ozkan AR, Karag€ oz S. Co-pyrolysis of waste polyolefins with waste motor oil.
J Anal Appl Pyrolysis 2016;119:233–41.
[2] Canakci M. Performance and emissions characteristics of biodiesel from soybean oil. Proc
Inst Mech Eng Part D J Automob Eng 2005;219(7):915–22.
[3] British Petroleum. BP statistical review of world energy June 2016. 65th ed. 2016. p. 1–48.
https://doi.org/10.1016/j.egypro.2013.06.172.
[4] Borman GL, Ragland KW. Combustion engineering. McGraw Hill; 1989.
[5] Al-Omari SB. Used engine lubrication oil as a renewable supplementary fuel for furnaces.
Energy Convers Manag 2008;49:3648–53. https://doi.org/10.1016/j.enconman.
2008.07.011.
[6] Rakopoulos CD, Antonopoulos KA, Rakopoulos DC. Multi-zone modeling of diesel
engine fuel spray development with vegetable oil, bio-diesel or Diesel fuels. Energy Con-
vers Manag 2006;47:1550–73. https://doi.org/10.1016/j.enconman.2005.08.005.
[7] El-Fadel M, Khoury R. Strategies for vehicle waste-oil management: a case study. Resour
Conserv Recycl 2001;33:75–91. https://doi.org/10.1016/S0921-3449(01)00058-1.
[8] Lam SS, Russell AD, Chase HA. Pyrolysis using microwave heating: a sustainable process
for recycling used car engine oil. Ind Eng Chem Res 2010;49:10845–51. https://doi.org/
10.1021/ie100458f.
[9] Bridgwater AV, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Org Geo-
chem 1999;30:1479–93. https://doi.org/10.1016/S0146-6380(99)00120-5.
[10] Demirbas A. Effects of temperature and particle size on bio-char yield from pyrolysis of
agricultural residues. J Anal Appl Pyrolysis 2004;72:243–8. https://doi.org/10.1016/j.
jaap.2004.07.003.
[11] Lam SS, Russell AD, Lee CL, Chase HA. Microwave-heated pyrolysis of waste automo-
tive engine oil: influence of operation parameters on the yield, composition, and fuel prop-
erties of pyrolysis oil. Fuel 2012;92:327–39. https://doi.org/10.1016/j.fuel.2011.07.027.
[12] Lo SL, Huang YF, Te CP, Kuan WH. Microwave pyrolysis of lignocellulosic biomass.
Energy Procedia 2017;105:41–6. https://doi.org/10.1016/j.egypro.2017.03.277.
[13] Suriapparao DV, Vinu R. Resource recovery from synthetic polymers via microwave
pyrolysis using different susceptors. J Anal Appl Pyrolysis 2015;113:701–12.
[14] Suriapparao DV, Vinu R. Bio-oil production via catalytic microwave pyrolysis of model
municipal solid waste component mixtures. RSC Adv 2015;5:57619–31. https://doi.org/
10.1039/C5RA08666C.
[15] Lam SS, Chase HA. A review on waste to energy processes using microwave pyrolysis.
Energies 2012;5:4209–32. https://doi.org/10.3390/en5104209.
[16] Robinson JP, Snape CE, Kingman SW, Shang H. Thermal desorption and pyrolysis of oil
contaminated drill cuttings by microwave heating. J Anal Appl Pyrolysis 2008;81:27–32.
https://doi.org/10.1016/j.jaap.2007.07.004.
[17] Ludlow-Palafox C, Chase HA. Microwave-induced pyrolysis of plastic wastes. Ind Eng
Chem Res 2001;40:4749–56. https://doi.org/10.1021/ie010202j.
[18] Osepchuk JM. Microwave power applications. IEEE Trans Microw Theory Tech
2002;50:975–85. https://doi.org/10.1109/22.989980.