Page 191 - Advances in Eco-Fuels for a Sustainable Environment
P. 191
Microwave-assisted fast pyrolysis of hazardous waste engine oil into green fuels 155
[37] Appleton TJ, Colder RI, Kingman SW, Lowndes IS, Read AG. Microwave technology for
energy-efficient processing of waste. Appl Energy 2005;81:85–113. https://doi.org/
10.1016/j.apenergy.2004.07.002.
[38] Huang YF, Kuan WH, Chang CC, Tzou YM. Catalytic and atmospheric effects on micro-
wave pyrolysis of corn stover. Bioresour Technol 2013;131:274–80. https://doi.org/
10.1016/j.biortech.2012.12.177.
[39] Lam SS, Liew RK, Cheng CK, Chase HA. Catalytic microwave pyrolysis of waste engine
oil using metallic pyrolysis char. Appl Catal B Environ 2015;176–177:601–17. https://doi.
org/10.1016/j.apcatb.2015.04.014.
[40] Dernovsek O, Naeini A, Preu G, Wersing W, Eberstein M, Schiller WA. LTCC glass-
ceramic composites for microwave application. J Eur Ceram Soc 2001;21:1693–7.
https://doi.org/10.1016/S0955-2219(01)00096-6.
[41] Antunes E, Jacob MV, Brodie G, Schneider PA. Microwave pyrolysis of sewage biosolids:
dielectric properties, microwave susceptor role and its impact on biochar properties. J Anal
Appl Pyrolysis 2018;129:93–100. https://doi.org/10.1016/j.jaap.2017.11.023.
[42] Robinson JP, Kingman SW, Baranco R, Snape CE, Al-Sayegh H. Microwave pyrolysis of
wood pellets. Ind Eng Chem Res 2010;49:459–63. https://doi.org/10.1021/ie901336k.
[43] Hussain Z, Khan KM, Hussain K. Microwave-metal interaction pyrolysis of polystyrene.
J Anal Appl Pyrolysis 2010;89:39–43. https://doi.org/10.1016/j.jaap.2010.05.003.
[44] Chanaa MB, Lallemant M, Mokhlisse A. Pyrolysis of Timahdit, Morocco, oil shales
under microwave field. Fuel 1994;73:1643–9. https://doi.org/10.1016/0016-2361(94)
90145-7.
[45] Zhao X, Song Z, Liu H, Li Z, Li L, Ma C. Microwave pyrolysis of corn stalk bale: a prom-
ising method for direct utilization of large-sized biomass and syngas production. J Anal
Appl Pyrolysis 2010;89:87–94. https://doi.org/10.1016/j.jaap.2010.06.001.
[46] Domı ´nguez A, Men endez JA, Inguanzo M, Bernad PL, Pis JJ. Gas chromatographic-mass
spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of dif-
ferent sewage sludges. J Chromatogr A 2003;1012:193–206. https://doi.org/10.1016/
S0021-9673(03)01176-2.
[47] Tripathi AK, Ojha DK, Vinu R. Selective production of valuable hydrocarbons from waste
motorbike engine oils via catalytic fast pyrolysis using zeolites. J Anal Appl Pyrolysis
2015;114:281–92. https://doi.org/10.1016/j.jaap.2015.06.009.
[48] Nourreddine M. Recycling of auto shredder residue. J Hazard Mater 2007;139:481–90.
https://doi.org/10.1016/j.jhazmat.2006.02.054.
[49] Santini A, Passarini F, Vassura I, Serrano D, Dufour J, Morselli L. Auto shredder residue
recycling: mechanical separation and pyrolysis. Waste Manag 2012;32:852–8. https://doi.
org/10.1016/j.wasman.2011.10.030.
[50] Donaj P, Yang W, Błasiak W, Forsgren C. Recycling of automobile shredder residue with
a microwave pyrolysis combined with high temperature steam gasification. J Hazard
Mater 2010;182(1–3):80–9.
[51] Chen WH, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification
and applications. Renew Sust Energ Rev 2015;44:847–66.
[52] Lam SS, Russell AD, Chase HA. Microwave pyrolysis, a novel process for recycling waste
automotive engine oil. Energy 2010;35:2985–91. https://doi.org/10.1016/j.energy.
2010.03.033.
[53] Williams PT, Besler S, Taylor DT. The pyrolysis of scrap automotive tyres. The influence
of temperature and heating rate on product composition. Fuel 1990;69:1474–82. https://
doi.org/10.1016/0016-2361(90)90193-T.