Page 100 - Advances in Renewable Energies and Power Technologies
P. 100

References     73




                   [37] M.L. Sabo, N. Mariun, H. Hizam, M.A. Mohd Radzi, A. Zakaria, Spatial matching of
                       large-scale grid-connected photovoltaic power generation with utility demand in
                       Peninsular Malaysia, Appl. Energy 191 (2017) 663e688, https://doi.org/10.1016/
                       j.apenergy.2017.01.087.
                   [38] B. Niblick, A.E. Landis, Assessing renewable energy potential on United States mar-
                       ginal and contaminated sites, Renew. Sustain. Energy Rev. 60 (2016) 489e497, https://
                       doi.org/10.1016/j.rser.2015.12.045.
                   [39] I. Gherboudj, H. Ghedira, Assessment of solar energy potential over the United Arab
                       Emirates using remote sensing and weather forecast data, Renew. Sustain. Energy Rev.
                       55 (2016) 1210e1224, https://doi.org/10.1016/j.rser.2015.03.099.
                   [40] D. Mentis, M. Welsch, F. Fuso Nerini, O. Broad, M. Howells, M. Bazilian,
                       H. Rogner, A GIS-based approach for electrification planningdacase study on
                       Nigeria, Energy Sustain. Dev. 29 (2015) 142e150, https://doi.org/10.1016/
                       j.esd.2015.09.007.
                   [41] G. Khan, S. Rathi, Optimal site selection for solar PV power plant in an indian state
                       using geographical information system (GIS), Int. J. Emerg. Eng. Res. Technol. 2
                       (2014) 260e266.
                   [42] A. Alami Merrouni, A. Mezrhab, A. Mezrhab, PV sites suitability analysis in the
                       Eastern region of Morocco, Sustain. Energy Technol. Assess. 18 (2016) 6e15,
                       https://doi.org/10.1016/j.seta.2016.09.006.
                   [43] K.Y. Kebede, Viability study of grid-connected solar PV system in Ethiopia, Sustain.
                       Energy Technol. Assess. 10 (2015) 63e70, https://doi.org/10.1016/j.seta.2015.02.003.
                   [44] S. Wang, L. Zhang, D. Fu, X. Lu, T. Wu, Q. Tong, Selecting photovoltaic generation
                       sites in Tibet using remote sensing and geographic analysis, Sol. Energy 133 (2016)
                       85e93, https://doi.org/10.1016/j.solener.2016.03.069.
                   [45] K. Calvert, W. Mabee, More solar farms or more bioenergy crops? Mapping and
                       assessing potential land-use conflicts among renewable energy technologies in eastern
                       Ontario, Canada, Appl. Geogr. 56 (2015) 209e221, https://doi.org/10.1016/
                       j.apgeog.2014.11.028.
                   [46] A. Massimo, M. Dell’Isola, A. Frattolillo, G. Ficco, Development of a geographical
                       information system (GIS) for the integration of solar energy in the energy planning
                       of a wide area, Sustainability 6 (2014) 5730e5744, https://doi.org/10.3390/
                       su6095730.
                   [47] A.N. Arnette, C.W. Zobel, Spatial analysis of renewable energy potential in the greater
                       southern Appalachian mountains, Renew. Energy 36 (2011) 2785e2798, https://
                       doi.org/10.1016/j.renene.2011.04.024.
                   [48] A.M. Gormally, J.D. Whyatt, R.J. Timmis, C.G. Pooley, A regional-scale assessment
                       of local renewable energy resources in Cumbria, UK, Energy Policy 50 (2012)
                       283e293, https://doi.org/10.1016/j.enpol.2012.07.015.
                   [49] E. Borgogno Mondino, E. Fabrizio, R. Chiabrando, Site selection of large
                       ground-mounted photovoltaic plants: a GIS decision support system and an applica-
                       tion to Italy, Int. J. Green. Energy 12 (2014) 515e525, https://doi.org/10.1080/
                       15435075.2013.858047.
                   [50] M. Rumbayan, A. Abudureyimu, K. Nagasaka, Mapping of solar energy potential
                       in Indonesia using artificial neural network and geographical information system,
                       Renew. Sustain. Energy Rev. 16 (2012) 1437e1449, https://doi.org/10.1016/
                       j.rser.2011.11.024.
   95   96   97   98   99   100   101   102   103   104   105