Page 99 - Advances in Renewable Energies and Power Technologies
P. 99
72 CHAPTER 2 Solar PV Power Plants Site Selection: A Review
[22] N.Y. Aydin, E. Kentel, H. Sebnem Duzgun, GIS-based site selection methodology for
hybrid renewable energy systems: a case study from western Turkey, Energy Convers.
Manag. 70 (2013) 90e106, https://doi.org/10.1016/j.enconman.2013.02.004.
[23] J. Liu, F. Xu, S. Lin, Site selection of photovoltaic power plants in a value chain based
on grey cumulative prospect theory for sustainability: a case study in Northwest China,
J. Clean. Prod. 148 (2017) 386e397, https://doi.org/10.1016/j.jclepro.2017.02.012.
[24] R. El-azab, A. Amin, Optimal solar plant site selection, in: IEEE Southeast Con. 2015.
Florida, USA, 2015, p. 7132992, https://doi.org/10.1109/SECON.
[25] A. Lee, H.-Y. Kang, Y.-J. Liou, A hybrid multiple-criteria decision-making approach
for photovoltaic solar plant location selection, Sustainability 9 (2017) 184, https://
doi.org/10.3390/su9020184.
[26] A. Jain, R. Mehta, S.K. Mittal, Modeling impact of solar radiation on site selection for
solar PV power plants in India, Int. J. Green. Energy 8 (2011) 486e498, https://
doi.org/10.1080/15435075.2011.576293.
[27] Y. Wu, Y. Yi-sheng, F.T. Li-na, L. Wei, F. Luo-jie, Macro-site selection of wind/solar
hybrid power station based on ideal matter-element model, Electr. Power Energy Syst.
35 (2013) 194e204, https://doi.org/10.1016/j.rser.2014.04.005.
[28] M. Vafaeipour, S. Hashemkhani Zolfani, M.H. Morshed Varzandeh, A. Derakhti,
M. Keshavarz Eshkalag, Assessment of regions priority for implementation of solar
projects in Iran: new application of a hybrid multi-criteria decision making
approach, Energy Convers. Manag. 86 (2014) 653e663, https://doi.org/10.1016/
j.enconman.2014.05.083.
[29] C.R. Chen, C.C. Huang, H.J. Tsuei, A hybrid MCDM model for improving GIS-based
solar farms site selection, Int. J. Photoenergy (2014), https://doi.org/10.1155/2014/
925370.
[30] Y. Sun, A. Hof, R. Wang, J. Liu, Y. Lin, D. Yang, GIS-based approach for potential anal-
ysis of solar PV generation at the regional scale: a case study of Fujian Province, Energy
Policy 58 (2013) 248e259, https://doi.org/10.1016/j.enpol.2013.03.002.
[31] F.E. Boran, T. Menlik, K. Boran, Multi-criteria axiomatic design approach to evaluate
sites for grid-connected photovoltaic power plants: a case study in Turkey, Energy
Source B Econ. Plan. Policy 5 (2010) 290e300, https://doi.org/10.1080/
15567240802533831.
[32] M. Go ´mez, A. Lo ´pez, F. Jurado, Optimal placement and sizing from standpoint of the
investor of photovoltaics grid-connected systems using binary particle Swarm
optimization, Appl. Energy 87 (2010) 1911e1918, https://doi.org/10.1016/
j.apenergy.2009.12.021.
[33] J. Brewer, D.P. Ames, D. Solan, R. Lee, J. Carlisle, Using GIS analytics and social
preference data to evaluate utility-scale solar power site suitability, Renew. Energy
81 (2015) 825e836, https://doi.org/10.1016/j.renene.2015.04.017.
[34] C. Perpin ˜a Castillo, F. Batista e Silva, C. Lavalle, An assessment of the regional poten-
tial for solar power generation in EU-28, Energy Policy 88 (2016) 86e99, https://
doi.org/10.1016/j.enpol.2015.10.004.
[35] J.R. Janke, Multicriteria GIS modeling of wind and solar farms in Colorado, Renew.
Energy 35 (2010) 2228e2234, https://doi.org/10.1016/j.renene.2010.03.014.
[36] M.A. Anwarzai, K. Nagasaka, Utility-scale implementable potential of wind and solar
energies for Afghanistan using GIS multi-criteria decision analysis, Renew. Sustain.
Energy Rev. 71 (2017) 150e160, https://doi.org/10.1016/j.rser.2016.12.048.