Page 184 - Advances in Renewable Energies and Power Technologies
P. 184
References 157
assess its operation in catching the GP. These two techniques have been simulated in
cosimulation between Matlab/Simulink and PSIM. The simulation results show that
the MPSO technique is more effective than FLC in following the GP. The generated
power has been increased considerably with MPSO technique in shading condition
than FLC. The increase in the generated power in MPSO technique than FLC de-
pends on the level of partial shading conditions. The simulation results show the su-
periority of MPSO technique during normal and partial shading conditions.
REFERENCES
[1] T. Esram, P.L. Chapman, Comparison of photovoltaic array maximum power point
tracking techniques, IEEE Trans. EC 22 (2) (June 2007) 439e449.
[2] V. Salas, E. Olı ´as, A. Barrado, A. La ´zaro, Review of the maximum power point tracking
algorithms for stand-alone photovoltaic systems, Sol. Energy Mater. Sol. Cells 90 (11)
(July 6, 2006) 1555e1578.
[3] A. Balouktsis, T.D. Karapantsios, K. Anastasiou, A. Antoniadis, I. Balouktsis, Load
matching in a direct-coupled photovoltaic system-application to Thevenin’s equivalent
loads, Int. J. Photoenergy 2006 (27274) (2006) 1e7.
[4] K.Y. Khouzam, Optimum load matching in direct-coupled photovoltaic power systems
application to resistive loads, IEEE Trans. EC 5 (2) (1990) 265e271.
[5] W.R. Anis, H.M.B. Metwally, Dynamic performance of a directly coupled PV pumping
system, Sol. Energy 53 (4) (1994) 369e377.
[6] M.A.S. Masoum, H. Dehbonei, E.F. Fuchs, Theoretical and experimental analyses of
photovoltaic systems with voltage and current-based maximum power-point tracking,
IEEE Trans. Energy Convers. 17 (4) (December 2002) 514e522.
[7] H.-J. Noh, D.-Y. Lee, D.-S. Hyun, An improved MPPT converter with current compen-
sation method for small scaled PV-applications, in: Proc. 28th Annu. Conf. Ind. Elec-
tron. Soc., 2002, pp. 1113e1118.
[8] K. Kobayashi, H. Matsuo, Y. Sekine, A novel optimum operating point tracker of the
solar cell power supply system, in: Proc. 35th Annu. IEEE Power Electron. Spec.
Conf., 2004, pp. 2147e2151.
[9] B. Bekker, H.J. Beukes, Finding an optimal PV panel maximum power point tracking
method, in: 7th AFRICON Conference in Africa, 2004, pp. 1125e1129.
[10] N. Mutoh, T. Matuo, K. Okada, M. Sakai, Prediction-data-based maximum e power -
point-tracking method for photovoltaic power generation systems, in: Proc. 33rd Annu.
IEEE Power Electron. Spec. Conf., 2002, pp. 1489e1494.
[11] S. Yuvarajan, S. Xu, Photo-voltaic power converter with a simple maximum-power-
point-tracker, in: Proc. 2003 Int. Symp. Circuits Syst., 2003 pp. III-399eIII-402.
[12] M. Veerachary, T. Senjyu, K. Uezato, Voltage-based maximum power point tracking
control of PV system, IEEE Trans. Aerosp. Electron. Syst. 38 (1) (January 2002)
262e270.
[13] N. Fermia, D. Granozio, G. Petrone, M. Vitelli, Predictive & adaptive MPPT perturb
and observe method, IEEE Trans. Aerosp. Electron. Syst. 43 (3) (July 2007) 934e950.
[14] M.-L. Chiang, C.-C. Hua, J.-R. Lin, Direct power control for distributed PV power sys-
tem, in: Proc. Power Convers. Conf., 2002, pp. 311e315.