Page 81 - Advances in Renewable Energies and Power Technologies
P. 81

54     CHAPTER 1 Solar Cells and Arrays: Principles, Analysis, and Design




                         Table 1.5 Comparison Between Extracted Electrical Performance
                         Parameters for Two Different Emitter Sidewall Surfaces
                                                                      Aluminum Is Deposited
                                                 D                        D
                                                n  Sidewall Surface Is  on n  Emitter Sidewall
                          Parameter             Passivated with SiO 2  Surface
                          I s (A)               2   10  18            1.9   10  17
                          I sc (V)              6.3                   6.2
                          J sc (A)              35                    34.4
                          V oc (V)              0.54                  0.52
                          FF (%)                80.8                  80.7
                          h c (%)               11.7                  11.1


                                                                                þ
                         surface treatment on V oc . It is obvious that V oc is increased when the n sidewall sur-
                         face is passivated with SiO 2 . The reason is that the SiO 2 passivation decreases the
                         gradient of the excess hole distribution. Thus, the reverse saturation current de-
                         creases, which in turn increases V oc .



                         REFERENCES
                          [1] J. Fricke, W.L. Borst, Essentials of Energy Technology: Sources, Transport, Storage,
                             Conservation, Wiley, 2013.
                          [2] http://pveducation.org/pvcdrom/2-properties-sunlight/solar-radiation-earths-surface.
                          [3] https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810016493.pdf.
                          [4] http://www.nrel.gov/docs/legosti/old/3895.pdf.
                          [5] www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/solar-
                             radiation.
                          [6] https://www.researchgate.net/file.PostFileLoader.html?id¼553e4871d685ccd10e8b4618
                             &assetKey¼AS%3A273765705945088%401442282238044.
                          [7] https://ocw.tudelft.nl/wp-content/uploads/Solar-Cells-R3eCH3_Solar_cell_materials.
                             pdf.
                          [8] H.W. Schock, Thin Film Compound Semiconductor Solar Cells: An Option for Large
                             Scale Applications?, in: Tenth E.C. Photovoltaic Solar Energy Conference, 1991,
                             pp. 777e782.
                          [9] W.C.H. Choy (Ed.), Organic Solar Cells Materials and Device Physics, 2013.
                         [10] C.C. Stoumpos, M.G. Kanatzidis, Halide perovskites: poor Man’s high-performance
                             semiconductors”, Adv. Mater. 28 (28) (2016) 5778e5793.
                         [11] A. Zekry, Electronic Devices: A University Textbook, Ain Shams University, 1998.
                         [12] H. Zimmerman, Integrated Circuit Optoelectronics, Springer-Verlag Berlin Heidelberg,
                             2010.
                         [13] A. Zekry, G. ElDllal, Effect of MS contact on the electrical behavior of solar cells,
                             J. Solid State Electronics 31 (1) (1988) 91e97.
                         [14] M. Abdelnaby, A. Zekry, F. Elakkad, H.F. Ragaie, Dependence of dark current on zinc
                             concentration in ZnxCd1-xS/ZnTe hetero-junctions, Sol. Energy Mater. Sol. Cells 29
                             (1993) 97e108.
   76   77   78   79   80   81   82   83   84   85   86