Page 302 - Advances in Textile Biotechnology
P. 302
Enzymatic functionalization of cellulosic fi bres for textiles 283
bodin, a., ahrenstedt, l., fi nk, h., brumer, h., risberg, b. and gatenholm, p. 2007a.
Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhe-
sion and proliferation of endothelial cells: implications for tissue engineering.
Biomacromolecules 8: 3697–3704.
bodin, a., concaro, s., brittberg, m. and gatenholm, p. 2007b. Bacterial cellulose as
a potential meniscus implant. J. Tissue Eng. Regen. Med. 1: 406–408.
bodin, a., gustafsson, l. and gatenholm, p. 2006. Surface-engineered bacterial cel-
lulose as template for crystallization of calcium phosphate. J. Biomater. Sci.-
Polym. Ed. 17: 435–447.
bollok, m., henriksson, h., kallas, å., jahic, m., teeri, t. t. and enfors, s. o. 2005.
Production of poplar xyloglucan endotransglycosylase using the methylotrophic
yeast Pichia pastoris. Appl. Biochem. Biotechnol. 126: 61–77.
brumer, h., zhou, q., baumann, m. j., carlsson, k. and teeri, t. t. 2004. Activation of
crystalline cellulose surfaces through the chemoenzymatic modification of xylo-
glucan. J. Am. Chem. Soc. 126: 5715–5721.
brummell, d. a. 2006. Cell wall disassembly in ripening fruit. Funct. Plant Biol. 33:
103–119.
buckeridge, m. s., crombie, h. j., mendes, c. j. m., reid, j. s. g., gidley, m. j. and vieira,
c. c. j. 1997. A new family of oligosaccharides from the xyloglucan of Hymenaea
coubaril L. (Leguminosae) cotyledons. Carbohydr. Res. 303: 233–237.
busato, a. p., vargas-rechia, c. g. and reicher, f. 2001. Xyloglucan from the leaves
of Hymenaea courbaril. Phytochemistry 58: 525–531.
cantarel, b. l., coutinho, p. m., rancurel, c., bernard, t., lombard, v. and henrissat,
b. 2009. The carbohydrate-active enzymes database (CAZy): an expert resource
for glycogenomics. Nucleic Acids Res. 37: D233–D238.
carlmark, a. and malmström, e. e. 2003. ATRP grafting from cellulose fi bers to
create block-copolymer grafts. Biomacromolecules 4: 1740–1745.
carpita, n. and mccann, m. 2000. The Cell Wall. In Buchanan, B., Gruissem, W. and
Jones, R., eds, Biochemistry and molecular biology of plants, John Wiley & Sons,
Inc., Somerset, NJ, pp. 52–108.
carpita, n. c. and gibeaut, d. m. 1993. Structural models of primary-cell walls in
flowering plants: consistency of molecular structure with the physical-properties
of the walls during growth. Plant J. 3: 1–30.
chambat, g., karmous, m., costes, m., picard, m. and joseleau, j. p. 2005. Variation
of xyloglucan substitution pattern affects the sorption on celluloses with different
degrees of crystallinity. Cellulose 12: 117–125.
chanliaud, e., de silva, j., strongitharm, b., jeronimidis, g. and gidley, m. j. 2004.
Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites.
Plant J. 38: 27–37.
christiernin, m., henriksson, g., lindstrom, m. e., brumer, h., teeri, t. t., lindstrom,
t. and laine, j. 2003. The effects of xyloglucan on the properties of paper made
from bleached kraft pulp. Nord. Pulp Paper Res. J. 18: 182–187.
coviello, t., matricardi, p., marianecci, c. and alhaique, f. 2007. Polysaccharide
hydrogels for modified release formulations. J. Control. Release 119: 5–24.
de lima, d. u. and buckeridge, m. s. 2001. Interaction between cellulose and storage
xyloglucans: the influence of the degree of galactosylation. Carbohydr. Polym. 46:
157–163.
dufresne, a. 2008. Polysaccharide nano crystal reinforced nanocomposites. Can. J.
Chem. Rev. Can. Chim. 86: 484–494.
© Woodhead Publishing Limited, 2010