Page 306 - Advances in Textile Biotechnology
P. 306
Enzymatic functionalization of cellulosic fi bres for textiles 287
vincken, j. p., dekeizer, a., beldman, g. and voragen, a. g. j. 1995. Fractionation of
xyloglucan fragments and their interaction with cellulose. Plant Physiol. 108:
1579–1585.
wan, w. k., hutter, j. l., millon, l. and guhados, g. 2006. Bacterial cellulose and its
nanocomposites for biomedical applications, in Cellulose nanocomposites: pro-
cessing, characterization, and properties, ACS Symposium Series, vol. 938,
pp. 221–241.
whitney, s. e. c., wilson, e., webster, j., bacic, a., reid, j. s. g. and gidley, m. j. 2006.
Effects of structural variation in xyloglucan polymers on interactions with bacte-
rial cellulose. Am. J. Bot. 93: 1402–1414.
whittaker, j. w. 2003. Free radical catalysis by galactose oxidase. Chem. Rev. 103:
2347–2363.
yamatoya, k. and shirakawa, m. 2003. Xyloglucan: structure, rheological properties,
biological functions and enzymatic modifi cation. Curr. Trends Polym. Sci. 8: 27–72.
yan, h. w., lindstrom, t. and christiernin, m. 2006. Some ways to decrease fi bre
suspension flocculation and improve sheet formation. Nord. Pulp Paper Res. J. 21:
36–43.
yano, h., sugiyama, j., nakagaito, a. n., nogi, m., matsuura, t., hikita, m. and handa,
k. 2005. Optically transparent composites reinforced with networks of bacterial
nanofi bers. Adv. Mater. 17: 153–155.
york, w. s., harvey, l. k., guillen, r., albersheim, p. and darvill, a. g. 1993. The
structure of plant cell walls. 36. Structural analysis of tamarind seed xyloglucan
oligosaccharides using beta-galactosidase digestion and spectroscopic methods.
Carbohydr. Res. 248: 285–301.
zeyer, c., joyce, t. w., heitmann, j. a. and rucker, j. w. 1994a. Factors infl uencing
enzyme deinking of recycled fi ber. Tappi J. 77: 169–177.
zeyer, c., rucker, j. w., joyce, t. w. and heitmann, j. a. 1994b. Enzymatic deinking
of cellulose fabric. Text. Chem. Color. 26: 26–31.
zhou, q., baumann, m. j., brumer, h. and teeri, t. t. 2006a. The influence of surface
chemical composition on the adsorption of xyloglucan to chemical and mechani-
cal pulps. Carbohydr. Polym. 63: 449–458.
zhou, q., baumann, m. j., piispanen, p. s., teeri, t. t. and brumer, h. 2006b. Xyloglucan
and xyloglucan endo-transglycosylases (XET): Tools for ex vivo cellulose surface
modifi cation. Biocatal. Biotransform. 24: 107–120.
zhou, q., greffe, l., baumann, m. j., malmström, e., teeri, t. t. and brumer iii, h. 2005.
The use of xyloglucan as a molecular anchor for the elaboration of polymers from
cellulose surfaces: a general route for the design of biocomposites. Macromole-
cules 38: 3547–3549.
zhou, q., rutland, m. w., teeri, t. t. and brumer, h. 2007. Xyloglucan in cellulose
modifi cation. Cellulose 14: 625–641.
zykwinska, a., thibault, j. f. and ralet, m. c. 2008. Competitive binding of pectin
and xyloglucan with primary cell wall cellulose. Carbohydr. Polym. 74: 957–961.
zykwinska, a. w., ralet, m. c. j., garnier, c. d. and thibault, j. f. j. 2005. Evidence
for in vitro binding of pectin side chains to cellulose. Plant Physiol. 139: 397–407.
© Woodhead Publishing Limited, 2010