Page 305 - Advances in Textile Biotechnology
P. 305
286 Advances in textile biotechnology
pauly, m., albersheim, p., darvill, a. and york, w. s. 1999a. Molecular domains of
the cellulose/xyloglucan network in the cell walls of higher plants. Plant J. 20:
629–639.
pauly, m., andersen, l. n., kauppinen, s., kofod, l. v., york, w. s., albersheim, p. and
darvill, a. 1999b. A xyloglucan-specific endo-beta-1,4-glucanase from Aspergillus
aculeatus: expression cloning in yeast, purification and characterization of the
recombinant enzyme. Glycobiology 9: 93–100.
popper, z. a. 2008. Evolution and diversity of green plant cell walls. Curr. Opin. Plant
Biol. 11: 286–292.
priem, b., chambat, g., ruel, k. and joseleau, j. p. 1997. Use of the avidin–biotin
complex for specific immobilization of xyloglucan polysaccharides. J. Carbohydr.
Chem. 16: 625–633.
rao, p. s. and srivastava, h. c. 1973. Tamarind. In BeMiller, J. N., ed., Industrial
gums – polysaccharides and their derivatives, Academic Press, New York,
pp. 369–411.
reiter, w. d. 2002. Biosynthesis and properties of the plant cell wall. Curr. Opin.
Plant Biol. 5: 536–542.
rose, j. k. c., braam, j., fry, s. c. and nishitani, k. 2002. The XTH family of enzymes
involved in xyloglucan endotransglucosylation and endohydrolysis: Current per-
spectives and a new unifying nomenclature. Plant Cell Physiol. 43: 1421–1435.
samir, m., alloin, f. and dufresne, a. 2005. Review of recent research into cellulosic
whiskers, their properties and their application in nanocomposite fi eld. Biomac-
romolecules 6: 612–626.
sassi, j. f. and chanzy, h. 1995. Ultrastructural aspects of the acetylation of cellulose.
Cellulose 2: 111–127.
sassi, j. f., tekely, p. and chanzy, h. 2000. Relative susceptibility of the Iα and Iβ
phases of cellulose towards acetylation. Cellulose 7: 119–132.
shankaracharya, n. b. 1998. Tamarind – chemistry, technology and uses – a critical
appraisal. J. Food Sci. Technol. 35: 193–208.
shirakawa, m., yamatoya, k. and nishinari, k. 1998. Tailoring of xyloglucan proper-
ties using an enzyme. Food Hydrocolloid. 12: 25–28.
soni, r., nazir, a., chadha, b. s. and saini, h. s. 2008. Novel sources of fungal
cellulases for efficient deinking of composite paper waste. BioResources 3: 234–
246.
stiernstedt, j., brumer, h., zhou, q., teeri, t. t. and rutland, m. w. 2006a. Friction
between cellulose surfaces and effect of xyloglucan adsorption. Biomacromole-
cules 7: 2147–2153.
stiernstedt, j., nordgren, n., wågberg, l., brumer, h., gray, d. g. and rutland, m.
w. 2006b. Friction and forces between cellulose model surfaces: a comparison.
J. Coll. Int. Sci. 303: 117–123.
takeda, t., miller, j. g. and fry, s. c. 2008. Anionic derivatives of xyloglucan function
as acceptor but not donor substrates for xyloglucan endotransglucosylase activity.
Planta 227: 893–905.
teeri, t. t. and brumer, h. 2003. Method for the modifi cation of polymeric carbohy-
drate materials. Patent No. WO 03/033813.
teeri, t. t., brumer, h., daniel, g. and gatenholm, p. 2007. Biomimetic engineering
of cellulose-based materials. Trends Biotechnol. 25: 299–306.
valent, b. s. and albersheim, p. 1974. The structure of plant cell walls. 5. On the
binding of xyloglucan to cellulose fi bers. Plant Physiol. 54: 105–108.
© Woodhead Publishing Limited, 2010