Page 304 - Advances in Textile Biotechnology
P. 304
Enzymatic functionalization of cellulosic fi bres for textiles 285
john, m. j. and thomas, s. 2008. Biofibres and biocomposites. Carbohydr. Polym. 71:
343–364.
kallas, å. m., piens, k., denman, s. e., henriksson, h., faldt, j., johansson, p., brumer
iii, h. and teeri, t. t. 2005. Enzymatic properties of native and deglycosylated
hybrid aspen xyloglucan endotransglycosylase 16A expressed in Pichia pastoris.
Biochem. J. 390: 105–113.
kalum, l. 1998. Enzymic stone-wash appearance of denim obtained by a process
using xyloglucan/xyloglucanase. Patent No. WO 9849387.
klemm, d., heublein, b., fi nk, h. p. and bohn, a. 2005. Cellulose: fascinating biopoly-
mer and sustainable raw material. Angew. Chem. – Int. Edit. 44: 3358–3393.
klemm, d., schumann, d., udhardt, u. and marsch, s. 2001. Bacterial synthesized
cellulose – artificial blood vessels for microsurgery. Prog. Polym. Sci. 26: 1561–
1603.
kumar, c. s. and bhattacharya, s. 2008. Tamarind seed: properties, processing and
utilization. Crit. Rev. Food Sci. Nutr. 48: 1–20.
lang, p., masci, g., dentini, m., crescenzi, v., cooke, d., gidley, m. j., fanutti, c. and
reid, j. s. g. 1992. Tamarind seed polysaccharide – preparation, characterization
and solution properties of carboxylated, sulfated and alkylaminated derivatives.
Carbohydr. Polym. 17: 185–198.
lima, d. u., loh, w. and buckeridge, m. s. 2004. Xyloglucan–cellulose interaction
depends on the sidechains and molecular weight of xyloglucan. Plant Physiol.
Biochem. 42: 389–394.
lima, d. u., oliveira, r. c. and buckeridge, m. s. 2003. Seed storage hemicelluloses
as wet-end additives in papermaking. Carbohydr. Polym. 52: 367–373.
lönnberg, h., zhou, q., brumer, h., teeri, t. t., malmström, e. and hult, a. 2006.
Grafting of cellulose fibers with poly(ε-caprolactone) and poly(l-lactic acid) via
ring-opening polymerization. Biomacromolecules 7: 2178–2185.
matyjaszewski, k. and xia, j. h. 2001. Atom transfer radical polymerization. Chem.
Rev. 101: 2921–2990.
mikolasch, a. and schauer, f. 2009. Fungal laccases as tools for the synthesis of new
hybrid molecules and biomaterials. Appl. Microbiol. Biotechnol. 82: 605–624.
miyamoto, t., takahashi, s., ito, h., inagaki, h. and noishiki, y. 1989. Tissue biocom-
patibility of cellulose and its derivatives. J. Biomed. Mater. Res. 23: 125–133.
mohanty, a. k., misra, m. and hinrichsen, g. 2000. Biofibres, biodegradable polymers
and biocomposites: An overview. Macromol. Mater. Eng. 276: 1–24.
nakagaito, a. n. and yano, h. 2005. Novel high-strength biocomposites based on
microfibrillated cellulose having nano-order-unit web-like network structure.
Appl. Phys. A – Mater. Sci. Process. 80: 155–159.
nishitani, k. 1992. A novel method for detection of endoxyloglucan transferase.
Plant Cell Physiol. 33: 1159–1164.
nordgren, n., eklof, j., zhou, q., brumer, h. and rutland, m. w. 2008. Top-down
grafting of xyloglucan to gold monitored by QCM-D and AFM: Enzymatic activ-
ity and interactions with cellulose. Biomacromolecules 9: 942–948.
nyström, d., lindqvist, j., östmark, e., hult, a. and malmström, e. 2006. Superhy-
drophobic bio-fibre surfaces via tailored grafting architecture. Chem. Commun.
3594–3596.
pandey, j. k., kumar, a. p., misra, m., mohanty, a. k., drzal, l. t. and singh, r. p. 2005.
Recent advances in biodegradable nanocomposites. J. Nanosci. Nanotechnol. 5:
497–526.
© Woodhead Publishing Limited, 2010