Page 359 - Air pollution and greenhouse gases from basic concepts to engineering applications for air emission control
P. 359

11.3  Gaussian-Plume Dispersion Models                          337

              In reality, the plume rise stops at certain height, and the maximum plume rise is
            achieved at a critical distance of x c . The critical distance can be estimated using
                                 (
                                       5=8             4  3
                                   49F     for  F B \55 m =s
                             x c ¼     B  2=5                           ð11:42Þ
                                                         4
                                   119F     for  F B [ 55 m =s 3
                                        B
              And the corresponding maximum plume rise is
                                  8
                                         3=4
                                        F                4  3
                                    21:4  u  for  F B \55 m =s
                                  <      B
                            Dh m ffi                                      ð11:43Þ
                                        F  3=5
                                    38:7     for  F B [ 55 m =s
                                  :      B                4  3
                                         u
              In Example 11.3, we used the maximum plume rise for calculation. The actual
            ground-level concentration can now be predicted with improved accuracy if we
            consider the local plume rise.
            Example 11.4: Plume rise
            Consider a power plant stack with a diameter of d s ¼ 1:2 m and the stack emission
            gas is discharged at the speed of v s ¼ 5m=s. Assume horizontal wind speed
            u ¼ 1:1m=s, and surrounding air temperature is T a ¼ 300 K. Plot the plume rise
            downwind the emission source for discharge temperature of T s ¼ 500 K.
            Solution
            Since the from a power plant is buoyancy-dominant plume, we only consider the
            buoyancy flux

                               2                    2
                          T a d           300   1:2                   4  3
                F B ¼  1       s  gv s ¼  1          9:81   1:1 ¼ 7:063 m =s
                          T s  4          500    2

                            4
                              3
              Since F B \ 55 m =s the corresponding maximum plume rise is calculated using
                                        21:4  3=4
                                  Dh m ¼    F B  ¼ 84:3m
                                          u

              For T e ¼ 500 K, the transitional plume rise can then be determined using
                                           1                1

                                            3   25  7:063   3
                                    25 F B 2              2
                             Dh ¼      3  x  ¼         3  x
                                    6 u         6    1:1
                                        2 1=3

                                ¼ 22:11x
                                                  2 1=3
              Figure 11.9 is produced using Dh ¼ 22:11x Þ  with a cap of Dh m .
                                            ð
   354   355   356   357   358   359   360   361   362   363   364