Page 355 - Air pollution and greenhouse gases from basic concepts to engineering applications for air emission control
P. 355

11.3  Gaussian-Plume Dispersion Models                          333

            Table 11.4 Briggs parameterization for the dispersion coefficients
            Stability class  Open/Rural sites       Urban/Industrial sites
                         r y ðmÞ      r z mðÞ       r y ðmÞ      r z ðmÞ
                                                                     p
            A               0:22x     0:20x            0:32x     0:24x 1 þ 0:001x
                                                                      ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                         p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                           1 þ 0:0001x               1 þ 0:0004x
            B               0:16x     0:12x
                         p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                           1 þ 0:0001x
            C               0:11x        0:08x         0:22x     0:20x
                         p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                           1 þ 0:0001x  1 þ 0:0002x  1 þ 0:0004x
            D               0:08x        0:06x         0:16x        0:14x
                         p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                           1 þ 0:0001x  1 þ 0:0015x  1 þ 0:0004x  1 þ 0:0003x
            E               0:06x        0:03x         0:11x        0:08x
                         p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  .  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                           1 þ 0:0001x  1 þ 0:0003x  1 þ 0:0004x  1 þ 0:0015x
            F               0:04x       0:016x
                         p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                           1 þ 0:0001x  1 þ 0:0003x

              Note that the dispersion coefficients are different at different distances from the
            source. For the ease of programming, Briggs’ parameterization [5] for different
            Pasquill stability classes is widely used in air dispersion modeling. They are
            summarized in Table 11.4, where units of both x and r are meter.
              These equations are best applicable to x \ 10;000 m and become unrealiable for
            longer distances. They are not supposed to be used for distances greater than
            30;000 m. The corresponding roughness lengths ðz 0 Þ are 3 cm and 1 m for rural and
            urban sites, respectively [11]. These equations also show that Gaussian dispersion
            coefficients along horizontal and vertical directions are not constants, and that they
            vary at the distances downwind of a stack as a function of atmospheric stability.
              Continue from Eq. (11.33), the air pollutant concentration at the plume center-
            line can be determined by substituting y ¼ 0 and z ¼ H, into Eq. (11.33)

                                                     _ m
                                 Cx; y ¼ 0; z ¼ HÞ ¼                    ð11:34Þ
                                  ð
                                                  2pr y r z u
            Example 11.3: Gaussian plume model
            In a bright sunny day, the wind speed is assumed to be 6 m/s and horizontal. A
            power plant in a rural area with a stack of 100 m high continuously discharges SO 2
            into the atmosphere at a stable rate of 0.1 kg/s. The plume rise is 20 m. Ignoring the
            chemical reactions in the atmosphere,
            (a) estimate the SO 2 concentration at the center of the plume 5 km downwind
                from the stack.
            (b) estimate the ground level SO 2 concentration 5 km downwind
            (c) plot the ground level concentration right under the plume along wind direction
                from x = 2,000 m to x = 6,000 m
   350   351   352   353   354   355   356   357   358   359   360