Page 93 - Aircraft Stuctures for Engineering Student
P. 93

78  Energy methods of structural analysis















                  Fig. 4.7  Determination of  the deflection of a point on a framework by the method of complementary energy.


                  where Xi is the extension of the ith member, Fi the force in the ith member and A, the
                  corresponding displacement of the rth load P,. From the principle of the stationary
                  value of the total complementary energy

                                                                                     (4.16)


                  from which

                                                                                     (4.17)


                  Equation (4.16) is seen to be identical to the principle of virtual forces in which virtual
                  forces  SF  and  SP act  through  real  displacements  X  and  A.  Clearly  the  partial
                  derivatives with respect to P2  of the constant loads PI, P2,. . . , P,  vanish, leaving
                  the required deflection A,  as the unknown. At this stage, before A,  can be evaluated,
                  the load-displacement  characteristics of the members must be known. For linear
                  elasticity




                  where Li, Ai and Ei are the length, cross-sectional area and modulus of elasticity of the
                  ith member. On the other hand, if  the load-displacement  relationship is of a non-
                  linear form, say
                                                 Fi  = b(Xi)c
                  in which b and c are known, then Eq. (4.17) becomes




                  The computation of A, is best accomplished in tabular form, but before the proce-
                  dure is illustrated by an example some aspects of the solution merit discussion.
                    We note that the support reactions do not appear in Eq. (4.15). This convenient
                  absence derives from  the  fact  that  the  displacements AI, A,, . . . , A,  are  the  real
                  displacements of  the frame and fulfil the conditions of  geometrical compatibility
                  and boundary  restraint. The complementary energy of  the reaction at A  and  the
   88   89   90   91   92   93   94   95   96   97   98