Page 120 - Algorithm Collections for Digital Signal Processing Applications using MATLAB
P. 120

108                                                        Chapter 3


           9.       SOLVING DIFFERENTIAL EQUATION USING
                    EIGEN DECOMPOSITION


           Consider the problem of  solving the  third order   differential equation as
           given below.

                 3
                           2
                                 2
                      3
                ∂ u / ∂t +2 ∂ u / ∂t  - ∂u / ∂t  +u = 0 with the initial condition given
                U’’(0)=3,  U’(0)=1, U(0)= -1.

              Representing the above equation in the form of matrix representation.


                V  =        U’’
                               U’
                               U


                V’ =        U’’’
                               U’’
                               U’

                V’=      -2     1     1       V
                                      1    0          0
                              0    1      0


                V  =  c1 e λ1 t    E 1 +c2 e λ2 t   E 2 + c3 e λ3 t   E 3


              Where c1, c2 and c3 are the constants obtained using initial conditions.
           E1, E2 and E3 are the eigen vectors of the matrix A corresponding to the
           eigen values λ 1,λ 2,λ 3 respectively.
              The Eigen vectors and the eigen values of the  matrix A are displayed
           below.

                λ 1    = -2.2470  λ 2 =  0.8019 λ 3= -0.5550

                                             T
                E1= [-0.8990    0.4001   -0.1781]
   115   116   117   118   119   120   121   122   123   124   125