Page 121 - Algorithm Collections for Digital Signal Processing Applications using MATLAB
P. 121

3. Numerical Linear Algebra                                      109

                                             T
                E2= [-0.4484   -0.5592   -0.6973]

                                            T
                E3= [0.2600   -0.4686    0.8443]

                Thus V=   U’’
                                 U’      is obtained as follows
                                 U


                                                   (-0.4484) + c3 e
                U’’= c1 e -2.2470 t    (-0.8990) + c2  e 0.8019  t     -0.5550 t   (0.2600)

                                                  (-0.5592) + c3 e
                U’= c1 e -2.2470 t    (0.4001) + c2  e 0.8019  t     -0.5550 t   (-0.4686)

                                                 (-0.6973) + c3 e
                U= c1 e -2.2470 t   (-0.1781) + c2  e 0.8019  t     -0.5550 t   (0.8443)

              The values of the constants can be solved using the initial conditions
           using the set of equations given below.


                U’’(0) =3 =(-0.8990) c1 + (-0.4484) c2   + (0.2600) c3


                U’(0) =1 = (0.4001) c1 + (-0.5592) c2   + (-0.4686) c3



                U(0) = -1 = (-0.1781)c1 +  (-0.6973)c2   + (0.8443) c3

                Thus c1= -3.4815, c2= -1.5790, c3= -3.2227


           10.      COMPUTATION OF PSEUDO INVERSE
                    OF THE MATRIX


           Let us consider the matrix A =    2     3     4
                                                                3     4     5

           Decompose the matrix ‘A’ using Singular Value Decomposition.
   116   117   118   119   120   121   122   123   124   125   126