Page 97 - An Introduction to Microelectromechanical Systems Engineering
P. 97
76 Processes for Micromachining
[17] Lasky, J. B., “Wafer Bonding for Silicon-On-Insulator Technologies,” Applied Physics Let-
ters, Vol. 48, No. 1, January 6, 1986, pp. 78–80.
[18] Petersen, K. E., et al., “Silicon Fusion Bonding for Pressure Sensors,” Tech. Digest
Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 6–9, 1988,
pp. 144–147.
[19] Schmidt, M.A, “Wafer-to-Wafer Bonding for Microstructure Formation,” Proceedings of
the IEEE, Vol. 86, No. 8, August 1998, pp. 1575–1585.
[20] Tong, Q.–Y., and U. Gösele, Semiconductor Wafer Bonding, New York: Wiley, 1999,
pp. 49–72.
[21] Miki, N., et al., “Multi-Stack Silicon-Direct Wafer Bonding for 3D MEMS Manufactur-
ing,” Sensors and Actuators A, Vol. 103, 2003, pp. 191–194.
[22] Strawbridge, I., and P. F. James, “Glass Formation from Gels,” in High Performance
Glasses, M. Cable and J. M. Parker (eds.), London: Blackie Publishing, 1992, pp. 20–49.
[23] Guckel, H., “High-Aspect Ratio Micromachining Via Deep X-Ray Lithography,” Proceed-
ings of the IEEE, Vol. 86, No. 8, August 1998, pp. 1586–1593.
[24] Mulhern, G. T., D. S. Soane, and R. T. Howe, “Supercritical Carbon Dioxide Drying of
Microstructures,” Proc. 7th Int. Conf. on Solid-State Sensors and Actuators (Transducers
‘93), Yokohama, Japan, June 7–10, 1993, pp. 296–299.
[25] Srinivasan, U., et al., “Lubrication of Polysilicon Micromechanisms with Self-Assembled
Monolayers,” Technical Digest of Solid State Sensor and Actuator Workshop, Hilton Head,
SC, June 1998, pp. 156–161.
[26] MicroChem Corp., Data Sheet for NANO SU-8 2000, Newton, MA, February 2002.
[27] Mikroglas Teknik AG, “FOTURAN—A Photostructurable Glass,” Mainz, Germany,
2003.
[28] Ehrfeld, W., and U. Ehrfeld, “Progress and Profit Through Micro Technologies: Commer-
cial Applications of MEMS / MOEMS,” Proc. SPIE, Vol. 4,557, October 2001, pp. 1–10.
[29] Kalpakjian, S., and S. R. Schmid, Manufacturing Processes for Engineering Materials, 4th
Edition, Upper Saddle River, NJ: Pearson Education/Prentice Hall, 2003.
[30] DuPont Microcircuit Materials, “DuPont Green Tape™ Design and Layout Guideline,”
Research Triangle Park, NC, 2003.
[31] Kulke, R., et al., “LTCC—Multilayer Ceramic for Wireless and Sensor Applications,” Eng-
lish translation of “LTCC-Mehrlagenkeramik für Funk- und Sensor-Anwendungen,” Pro-
duktion von Leiterplatten und Systemen (PLUS), Eugen G. Leuze Verlag, December 2001,
pp. 2131–2136.
[32] Xia, Y., et al., “Non-Lithographic Methods for Fabrication of Elastomeric Stamps for Use
in Microcontact Printing,” Langmuir, Vol. 12, No. 16, 1996, pp. 4033–4038.
[33] B. Michel, et al., “Printing Meets Lithography: Soft Approaches to High-Resolution Pat-
terning,” IBM Journal of Research and Development, Vol. 45, No. 5, September 2001,
pp. 697–714.
[34] Chou, S. Y., P. R. Krauss, and P. J. Renstrom, “Nanoimprint Lithography,” J. Vac. Sci.
Technol. B, Vol. 14, No. 6, November/December 1996, pp. 4129–4133.
[35] Bustillo, J. M., R. T. Howe, and R. S. Muller, “Surface Micromachining for Micro-
electromechanical Systems,” Proceedings of the IEEE, Vol. 86, No. 8, August 1998,
pp. 1559–1561.
[36] Klaassen, E. H., et al., “Silicon Fusion Bonding and Deep Reactive Ion Etching; A New
Technology for Microstructures,” Proc. 8th Int. Conf. on Solid-State Sensors and Actua-
tors, Stockholm, Sweden, June 25–29, 1995, pp. 556–559.
[37] Shaw, K. A., Z. L. Zhang, and N. C. MacDonald, “SCREAM-I: A Single Mask, Single-
Crystal Silicon, Reactive Ion Etching Process for Microelectromechanical Structures,” Sen-
sors and Actuators, Vol. A40, No. 1, 1994, pp. 63–70.