Page 222 - Analysis and Design of Machine Elements
P. 222

Analysis and Design of Machine Elements
                   200
                         The normal force F canbeobtained from
                                         n
                                  F t1
                             F =                                                          (8.76)
                              n
                                 cos   
                       8.5.3  Tooth Surface Fatigue Strength Analysis
                       The calculation of surface contact stress essentially follows the same approach previ-
                       ously presented for spur and helical gears, except for some minor corrections asso-
                       ciated with bevel gear geometry. The contact stress for a bevel gear is calculated on
                       the virtual spur gear developed at the midpoint of the face width, employing the Hertz
                       formula.


                       8.5.3.1  Contact Stress Calculation
                       For a straight bevel gear tooth, the variables that will be used in the Hertz formula in the
                       virtual gear are
                             L = b                                                           (a)
                                   KF t1    2KT 1
                             KF =       =                                                    (b)
                               n
                                   cos     d m1  cos   
                                  d v1      d m1  sin   
                                =    sin    =                                                (c)
                              v1
                                   2        2cos    1
                                  d         u d sin   
                                =  v2  sin    =  v v1                                        (d)
                              v2
                                   2           2
                                               (      )
                              1    1    2cos    1    1
                                +    =           1 +                                         (e)
                                        d  sin      u
                              v1   v2    m1          v
                             u = u 2                                                         (f)
                              v
                                      d 1  √
                             b =    R =     R  1 + u 2                                       (g)
                                  R
                                       2
                             d  =(1 − 0.5   )d                                               (h)
                              m1          R  1
                       so
                                                 √               √
                                    √                     1              1        u
                                            2
                             cos    =  1 − sin    =  1 −        =   1 −      = √             (i)
                                 1
                                              1
                                                            2
                                                      1 + cot          1 + u 2       2
                                                              1                  1 + u
                         Integrating Eqs. (a)–(i) into the Hertz formula, we have
                                √                       √
                                         (     )        √                  (      )
                                √         1   1                                 1
                                √           ±           √            2cos     1 +
                                √ F                     √    2KT          1
                                √ n          1     2    √       1               u v
                            H           (  2     2     E
                              = √    ⋅            ) = Z             ⋅
                                   L     1−    1−          bd  cos      d   sin   
                                           1  +  2           m1          m1
                                          E 1  E 2
                                  √                                    √
                                  √                      (     )                     u  1+u 2
                                  √            2KT cos     1 +  1      √
                                                                                  1
                                  √     2         1     1    u v       √      2KT √ 1+u 2  u 2
                                                                       √
                              = Z E  √       ⋅                   = Z Z H  √  √
                                                                    E
                                    sin    cos       bd 2 m1                 R  1 + u (1 − 0.5   ) d
                                                                                            2 3
                                                                                  2
                                                                           2               R  1
   217   218   219   220   221   222   223   224   225   226   227