Page 145 - Applied Numerical Methods Using MATLAB
P. 145

134    INTERPOLATION AND CURVE FITTING
           Table 3.4 Boundary Conditions for a Cubic Spline


            (i) First-order derivatives  s (x 0 ) = S 0,1 ,s (x N ) = S N,1

                                   0
                                              N
               specified
            (ii) Second-order     s (x 0 ) = 2S 0,2 ,s (x N ) = 2S N,2


                                               N
                                   0
               derivatives specified
               (end-curvature adjusted)
                                                  h 0

           (iii) Second-order derivatives s (x 0 ) ≡ s (x 1 ) +  (s (x 1 ) − s (x 2 ))
                                    0      1         1      2
               extrapolated                       h 1
                                                     h N−1

                                  s (x N ) ≡ s N−1 (x N−1 ) +  (s N−1 (x N−1 ) − s    N−2 (x N−2 ))


                                   N
                                                     h N−2
           as their unknowns. Two additional equations necessary for the equations to be
           solvable are supposed to come from the boundary conditions for the first/second-
           order derivatives at the end points (x 0 ,y 0 )and (x N ,y N ) as listed in Table 3.4.
              Now, noting from (S1) that S k,0 = y k , we will arrange the constraints (S2)–(S4)
           and eliminate S k,1 ,S k,3 ’s to set up a set of equations with respect to the N + 1
           unknowns {S k,2 ,k = 0: N}. In order to do so, we denote each interval width by
           h k = x k+1 − x k and substitute (S0) into (S4) to write
                         s (x k+1 ) = 6S k,3 h k + 2S k,2 ≡ s

                         k                         k+1  (x k+1 ) = 2S k+1,2
                                   1
                          S k,3 h k =  (S k+1,2 − S k,2 )               (3.5.1a)
                                   3
                                   1
                       S k−1,3 h k−1 =  (S k,2 − S k−1,2 )              (3.5.1b)
                                   3
           We substitute these equations into (S2) with k + 1inplace of k
                                  3               2
            s k (x k+1 ) = S k,3 (x k+1 − x k ) + S k,2 (x k+1 − x k ) + S k,1 (x k+1 − x k ) + S k,0 ≡ y k+1
                                 3       2
                             S k,3 h + S k,2 h + S k,1 h k + y k ≡ y k+1
                                 k       k
           to eliminate S k,3 ’s and rewrite it as

                       h k                           y k+1 − y k
                         (S k+1,2 − S k,2 ) + S k,2 h k + S k,1 =  = dy k
                       3                                h k
                                                                        (3.5.2a)
                             h k (S k+1,2 + 2S k,2 ) + 3S k,1 = 3 dy k
                                                                        (3.5.2b)
                         h k−1 (S k,2 + 2S k−1,2 ) + 3S k−1,1 = 3 dy k−1
           We also substitute Eq. (3.5.1b) into (S3)


                   s     (x k ) = 3S k−1,3 h 2  + 2S k−1,2 h k−1 + S k−1,1 ≡ s (x k ) = S k,1
                   k−1             k−1                       k
   140   141   142   143   144   145   146   147   148   149   150