Page 350 - Applied Numerical Methods Using MATLAB
P. 350

UNCONSTRAINED OPTIMIZATION  339
                  N = 8, N = 2, N = [8 8]
                   p          b
                        pool P                    population X            fx
               01100110        01100110        −1.0000  −1.0000         −10.00
               01001111        10101011        −1.9020  −1.7059         −40.95
               11110110        01101000         4.6471  −0.9216          44.67
               01110111        11101111        −0.3333   4.3725          18.84
                                        decode                 evaluate
               10101101        10110011         1.7843   2.0196         −54.22
               11011011        11110110         3.5882   4.6471          19.71
               11011000        00000001         3.4706  −4.9608          85.84
               10011100        00011110         1.1176  −3.8235         −12.54
                                                  reproduction
                    random pairing
             a1 01111100    01111110 a2        −0.1209  −0.0466           0.28
             b1 01010111    10101011 b2        −1.5527   1.7356         −36.40
             c1 11000010    10011100 c2         2.6259   1.1550        − 50.62
             d1 10010011    11001111 d2  encode  0.7713  3.1452        − 44.58
             e1 10101101    10110011 e2         1.7843   2.0196        − 54.22
              f1 11000010   11010010  f2        2.6360   3.2601         −74.73
             g1 10101101    10110011 g2         1.7843   2.0196        − 54.22
             h1 10100001    01001010 h2         1.3160  −2.0846        − 35.76
                   crossover/mutuation
             a1  01111100   01111110 a2        −0.1373  − 0.0588          0.31
             b1' 01000010   10101010 b2'       −2.4118   1.6667        − 46.12
             c1' 11001101   10011111 c2'        3.0392   1.2353        − 52.96
             d1  10010011   11001111 d2 decode  0.7647   3.1176        − 44.73
             e1  10101101   10110011 e2         1.7843   2.0196        − 54.22
             f1' 11010111   11010011  f2'       3.4314   3.2745        − 69.94
             g1' 10100010   10110000 g2'        1.3529   1.9020        − 43.50
             h1  10100001   01001010 h2         1.3137  − 2.0980       − 35.88

                Figure 7.9  Reproduction/crossover mutation in one iteration of genetic algorithm.


            and is summarized in the box below. The reproduction/crossover process is illus-
            trated in Fig 7.9. This algorithm is cast into the routine “genetic()”and we
            append the following statements to the MATLAB program “nm717.m”in order
            to apply the routine for minimizing the function defined by Eq. (7.1.25). Inter-
            ested readers are welcome to run the program with these statements appended
            and compare the result with those of using other routines. Note that like the
            simulated annealing, the routine based on the idea of GA cannot always suc-
            ceed and its success/failure depends partially on the initial guess and partially
            on luck.
   345   346   347   348   349   350   351   352   353   354   355