Page 369 - Applied Numerical Methods Using MATLAB
P. 369

358    OPTIMIZATION

                 %nm7p01.m  to perform the revised golden search method
                 f701 = inline(’x.*(x-2)’, ’x’);
                 a=0;b=3; r= (sqrt(5)-1)/2;
                 TolX = 1e-4; TolFun = 1e-4; MaxIter=100;
                 h=b-a;rh = r*h;
                 c=b-rh; d =a+rh;
                 fc = f701(c);  fd = f701(d);
                 if fc < fd, [xo,fo] = opt_gs1(f701,a,c,fc,1 - r,d,r,TolX,TolFun,MaxIter)
                  else [xo,fo] = opt_gs1(f701,c,d,fd,r,b,r, TolX,TolFun,MaxIter)
                 end



            7.2 Nelder–Mead, Steepest Descent, Newton, SA, GA and fminunc(), fmin-
                search()
                Consider a two-variable objective function

                                     4     2         4     2
                             f(x) = x − 12x − 4x 1 + x − 16x − 5x 2     (P7.2.1)
                                     1     1         2     2
                                   − 20 cos(x 1 − 2.5) cos(x 2 − 2.9)

                whose gradient vector function is
                                     3
                                  4x − 24x 1 − 4 + 20 sin(x 1 − 2.5) cos(x 2 − 2.9)
                                    1
                  g(x) =∇f(x) =
                                     3
                                  4x − 32x 2 − 5 + 20 cos(x 1 − 2.5) sin(x 2 − 2.9)
                                    2
                                                                        (P7.2.2)
                You have the MATLAB functions f7p02(), g7p02() defining the objective
                function f(x) and its gradient function g(x). Youalsohaveapart ofthe
                MATLAB program which plots a mesh/contour-type graphs for f (x). Note
                that this gradient function has nine zeros as listed in Table P7.2.1.

                Table P7.2.1 Extrema (Maxima/Minima) and Saddle Points of the Function (P7.2.1)
                                                                      2
                                     2
                     Points    Signs of ∂ f/∂x 2     Points     Signs of ∂ f/∂x  2
                                         i                                i
                (1) [0.6965 −0.1423]  −, −  M   (6) [−1.6926 −0.1183]
                (2) [2.5463 −0.1896]            (7) [−2.6573 −2.8219]  +, +  m
                (3) [2.5209 2.9027]  +, +   G   (8) [−0.3227 −2.4257]
                (4) [−0.3865 2.9049]            (9) [2.5216 −2.8946]  +, +   m
                (5) [−2.6964 2.9031]
                (a) From the graphs (including Fig. P7.2) which you get by running the
                   (unfinished) program, determine the characteristic of each of the nine
                   points, that is, whether it is a local maximum(M)/minimum(m), the
                   global minimum(G) or a saddle point(S) which is a minimum with
                   respect to one variable and a maximum with respect to another variable.
                   Support your judgment by telling the signs of the second derivatives of
                   f (x) with respect to x 1 and x 2 .
   364   365   366   367   368   369   370   371   372   373   374