Page 487 - Applied Numerical Methods Using MATLAB
P. 487

476    FOURIER TRANSFORM
           Table E.2  Properties of DtFT (Discrete-Time Fourier Transform)
                                         ∞

           (0) Definition        X( ) =      x[n]e  −j n
                                       n=−∞
           (1) Linearity        αx[n] + βx[n] → αX( ) + βY( )
                                                                ∗
           (2) Symmetry         x[n] = x e [n] + x o [n]: real → X( ) ≡ X (− )
                                x e [n]: real and even → X e ( ) = Re{X( )}
                                x o [n]: real and odd → X o ( ) = jIm{X( )}
                                x[−n] → X(− )
           (3) Time shifting    x[n − n 1 ] → e −j n 1 X( )
           (4) Frequency shifting  e j  1 n x[n] → X(  −   1 )
                                             ∞

           (5) Real convolution  g[n] ∗ x[n] =  g[m]x[n − m] → G( )X( )
                                           m=−∞
                                          d
           (6) Complex derivative  nx[n] → j  X( )
                                          d
                                           1
           (7) Complex convolution x[n]y[n] →  X( ) ∗ Y( ) (periodic/circular convolution)
                                          2π

                                  x[n/M]  if n = mM(m : an integer)
           (8) Scaling                                         → X(M )
                                  0,      otherwise
                                  ∞
                                             1
                                                       2
                                         2
           (9) Parseval’s relation   |x[n]| =     |x( )| d
                                             2π
                                 n=−∞           2π
   482   483   484   485   486   487   488   489   490   491   492