Page 485 - Applied Numerical Methods Using MATLAB
P. 485

474    LAPLACE TRANSFORM
           Table D.2  Properties of Laplace Transform
                                                ∞

           (0) Definition        X(s) = L{x(t)}=  x(t)e −st dt
                                               0
           (1) Linearity        αx(t) + βx(t) → αX(s) + βY(s)

                                                                    0
           (2) Time shifting    x(t − t 1 )u s (t − t 1 ), t 1 > 0 → e −st 1  X(s) +  x(τ)e −sτ  dτ
                                                                  −t 1
                                s 1 t
           (3) Frequency shifting  e x(t) → X(s − s 1 )
           (4) Real convolution  g(t) ∗ x(t) → G(s)X(s)

           (5) Time derivative  x (t) → sX(s) − x(0)
                                   t        1       1     0
           (6) Time integral       x(τ) dτ →  X(s) +     x(τ) dτ
                                            s       s
                                 −∞                   −∞
                                         d
           (7) Complex derivative  tx(t) →−  X(s)
                                         ds
                                          1     σ 0 +∞
           (8) Complex convolution x(t)y(t) →     X(v)Y(s − v) dv
                                         2πj
                                              σ 0 −∞
           (9) Initial value theorem x(0) → lim sX(s)
                                      s→∞
           (10) Final value theorem x(∞) → lim sX(s)
                                       s→0
   480   481   482   483   484   485   486   487   488   489   490