Page 486 - Applied Numerical Methods Using MATLAB
P. 486

APPENDIX E















                         FOURIER TRANSFORM








            Table E.1  Properties of CtFT (Continuous-Time Fourier Transform)
                                                           ∞

            (0) Definition                  X(ω) = F{x(t)}=   x(t)e −jωt  dt
                                                          −∞
            (1) Linearity                  αx(t) + βx(t) → αX(ω) + βY(ω)
            (2) Symmetry                   x(t) = x e (t) + x o (t): real → X(ω) ≡ X (−ω)
                                                                        ∗
                                           x e (t): real and even → X e (ω) = Re{X(ω)}
                                           x o (t): real and odd → X o (ω) = jIm{X(ω)}
                                           x(−t) → X(−ω)
            (3) Time shifting              x(t − t 1 ) → e −jωt 1 X(ω)
            (4) Frequency shifting         e jω 1 t x(t) → X(ω − ω 1 )
                                                       ∞

            (5) Real convolution           g(t) ∗ x(t) =  g(τ)x(t − τ) dτ → G(ω)X(ω)
                                                      −∞
            (6) Time derivative            x (t) → jωX(ω)

                                              t         1
            (7) Time integral                  x(τ) dτ →  X(ω) + πX(0)δ(ω)
                                                       jω
                                            −∞
                                                    d
            (8) Complex derivative         tx(t) → j  X(ω)
                                                   dω
                                                     1
            (9) Complex convolution        x(t)y(t) →  X(ω) ∗ Y(ω)
                                                    2π
                                                   1
            (10) Scaling                   x(at) →  X(ω/a)
                                                  |a|
            (11) Duality                   g(t) → f(ω) ⇔ f(t) → 2πg(ω)
                                             ∞           1   ∞

                                                   2
                                                                   2
            (12) Parseval’s relation           |x(t)| dt →     |x(ω)| dω
                                                        2π
                                            −∞              −∞
                                          
            Applied Numerical Methods Using MATLAB , by Yang, Cao, Chung, and Morris
            Copyright   2005  John  Wiley  &  Sons,  I nc., ISBN 0-471-69833-4


                                                                            475
   481   482   483   484   485   486   487   488   489   490   491