Page 151 - Applied Petroleum Geomechanics
P. 151

144   Applied Petroleum Geomechanics


                  r ffiffiffiffiffiffi                       r  ffiffiffiffiffiffi
               K I   r    q 1            2 q  K II   r   q 1            2 q
           u x ¼      cos     ðk   1Þþ sin  þ         sin    ðk þ1Þþ cos
                G   2p    2 2             2    G    2p   2 2             2
                  ð1   JÞs
               þ          fr½cosðq þ 2aÞþ k cosðq   2aÞ
                    8G

                2 sin q sin 2 aŠþðk þ 1Þa cos 2 ag
                  r ffiffiffiffiffiffi                       r ffiffiffiffiffiffi
               K I   r   q 1             2 q  K II  r    q 1            2 q
           u y ¼      sin    ðk þ 1Þ  cos   þ         cos    ð1   kÞþ sin
               G    2p   2 2              2    G   2p    2 2             2
                 ð1   JÞs
               þ         fr½sinð2a   qÞþ k sinð2a þ qÞ  2 sin q cos 2 aŠ
                    8G
               þðk þ 1Þa sin 2 ag
                                                                      (4.23)
          where s is the far-field stress in y-direction (see Fig. 4.6A); J is the ratio of
          the far-field stress in x-direction to the far-field stress in y-direction.
             The crack intensity factors K I and K II can be obtained from the
          following equations:
                                            p
                                     K I ¼ s n pa                     (4.24)
                                              ffiffiffiffiffi
                                            p ffiffiffiffiffi
                                     K II ¼ s n pa                    (4.25)
          where s n is the normal stress perpendicular to the fracture surface; and s n is
          the shear stress parallel to the fracture surface. For the loading conditions
          shown in Fig. 4.6A, the intensity factors are specified by the following
          equations (Eftis and Subramonian, 1978):
                                p
                               s pa
                                  ffiffiffiffiffi
                          K I ¼      ½ð1 þ JÞ ð1   JÞcos 2 aŠ         (4.26)
                                 2
                                      p
                                     s pa
                                        ffiffiffiffiffi
                               K II ¼     ð1   JÞsin 2 a              (4.27)
                                       2
             The equations proposed by Eftis and Subramonian (1978) indicate that
          presence of the horizontal load for the inclined crack shows up both in the
          terms involving K I and K II , as well as in Eqs. (4.22) and (4.23). Both are
          necessary to give full account of load biaxiality.
             Consider a pressurized crack subjected to an internal pressure, p 0 , and
          the far-field compressive stresses s h and s H (see Fig. 4.6B), the stress
   146   147   148   149   150   151   152   153   154   155   156