Page 147 - Applied Petroleum Geomechanics
P. 147

140   Applied Petroleum Geomechanics


             Using Hooke’s law, the displacement components at the fracture tip can
          be obtained from Eq. (4.9):
                                                   q      3q
                                      2                     3
                         u     K I   r 6           2      2  7
                                  r ffiffiffiffiffiffi ð2k   1Þcos   cos
                            ¼         6                     7         (4.12)
                         v     4G   2p 4           q     3q  5
                                         ð2k þ 1Þsin   sin
                                                   2      2
          where u and v are the displacements along x- and y-axes, respectively; G is
          the shear modulus.
             For plane strain: k ¼ 3   4n and w ¼ 0.
                                                       n  R
             For plane stress: k ¼ (3   n)/(1 þ n) and w ¼   ðs x þ s y Þdz
                                                       E
          where w is the displacement along z-axis.
             The principal stresses (s 1 , s 2 , s 3 ) at the fracture tip can be obtained from
          Eqs. (4.9)e(4.11):

                                             2
                                                      q   3
                                               1 þ sin



                             s 1     K I    q 6       2 7
                                 ¼ p ffiffiffiffiffiffiffi cos  6        7          (4.13)
                             s 2     2pr    2  4      q    5
                                               1   sin

                                                      2
                                                        K I    q
                     For plane strain: s 3 ¼ nðs 1 þ s 2 Þ¼ 2n ffiffiffiffiffiffiffip  cos  (4.14)
                                                         2pr   2
                                For plane stress: s 3 ¼ 0             (4.15)
          4.2.4.2 Model II fracture
          For the mode II fracture under in-plane shear stresses in the far field, the
          stresses in the vicinity of the crack tip (point A in Fig. 4.5) can be expressed
          as follows (Whittaker et al., 1992):
                                     2                        3
                                           q         q   3q
                                     6  sin   2 þ cos cos    7
                                           2         2    2
                      2    3         6                       7
                        s x          6                       7
                                             q    q   3q
                                     6                       7
                      6
                           7
                      4 s y 5 ¼ p K II 6   sin cos cos       7        (4.16)
                                 ffiffiffiffiffiffiffi 6
                                                             7
                                             2    2    2
                                 2pr 6                       7
                        s xy         6                       7
                                     6     q        q   3q   7
                                       cos    1   sin sin
                                     4                       5
                                           2        2    2
             For plane strain: s z ¼ n(s x þ s y )
             For plane stress: s z ¼ s xz ¼ s yz ¼ 0.
          where K II is the mode II fracture tip stress intensity factor, and
                  p ffiffiffiffiffi
          K II ¼ s i pa; s i is the in-plane shear stresses in the far field.
   142   143   144   145   146   147   148   149   150   151   152