Page 146 - Applied Petroleum Geomechanics
P. 146

Basic rock fracture mechanics  139


                                            y
                                              σ




                                                  σ y
                                                    τ xy
                                                     σ x
                                                r          σ
                             σ         B   O     θ           x
                                                A
                                           2a



                                            σ
                   Figure 4.4 An infinite plate containing a fracture under biaxial tension.



              4.2.4 Fracture tip stresses and displacements
              4.2.4.1 Model I fracture
              The stress and displacement equations at the fracture tip can be derived
              from the well-known Westergaard function. For the mode I fracture under
              biaxial tension, the stresses in the vicinity of the crack tip (point A in
              Fig. 4.4) can be expressed in the following (Whittaker et al., 1992):

                                               2              3
                                                       q   3q
                                               6 1   sin sin
                            2    3                     2      7
                                               6            2 7
                              s x
                                               6              7
                                       K I             q   3q  7
                            6    7            q 6
                            4 s y 5 ¼ p ffiffiffiffiffiffiffi cos  6  1 þ sin sin  7    (4.9)
                                       2pr    2  6     2      7
                                               6            2 7
                              s xy
                                                     q
                                               6              7
                                                   sin cos
                                               4          3q 5
                                                     2    2
                               For plane strain: s z ¼ nðs x þ s y Þ     (4.10)
                              For plane stress: s z ¼ s xz ¼ s yz ¼ 0    (4.11)
              where s is the far-field stress; s x , s y , s z , and s xy are the normal and shear
              stresses in the vicinity of the fracture tip; r is the distance from the fracture
                                                          p ffiffiffiffiffi
              tip; q is an angle as shown in Fig. 4.4; and K I ¼ s pa.
                 In this chapter, tensile stress is positive and compressive stress is negative
              to be consistent with the fracture mechanics sign convention.
   141   142   143   144   145   146   147   148   149   150   151