Page 167 - Applied Petroleum Geomechanics
P. 167

160   Applied Petroleum Geomechanics


          where E m is Young’s modulus of the rock mass; E r is Young’s modulus of
          the rock matrix; k n is the normal stiffness of the structure plane; and s is the
          spacing of structure planes.
             The weak planes or fractures in a rock mass make the compressive
          strength of the rock mass far less than that of the rock matrix. The presence
          of bedding or other discontinuities also causes anisotropies in both me-
          chanical properties and mechanical behaviors; for example, rock strength,
          Young’s modulus, and deformation are considerably different in the parallel
          and perpendicular directions of the bedding, as described in Chapters 2
          and 3. These behaviors should be considered in the subsurface engineering
          design and operations.


          References
          Abou-Sayed, A., Brechtel, C., Clifton, R., 1978. In situ stress determination by hydro-
             fracturing: a fracture mechanics approach. J. Geophys. Res. 83 (B6), 2851e2862.
          Alberty, M., McLean, M., 2004. A physical model for stress cages. SPE-90493. SPE Annual
             Technical Conference and Exhibition, Houston, 26e29 September.
          Bandis, S.C., 1980. Experimental Studies of Scale Effects on Shear Strength and Defor-
             mation of Rock Joints. Ph.D. thesis. Univ. of Leeds, 385pp.
          Bandis, S.C., Lumsden, A.C., Barton, N.R., 1983. Fundamentals of rock joint deformation.
             Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 20, 249e268.
          Barenblatt, G.I., 1962. Mathematical theory of equilibrium cracks in brittle fracture. Adv.
             Appl. Mech. 7, 55e129.
          Barton, N., 1973. Review of a new shear strength criterion for rock joints. Eng. Geol. 7 (4),
             287e332.
          Barton, N., 1976. The shear strength of rock and rock joints. Int. J. Rock Mech. Min. Sci.
             Geomech. Abstr. 13, 255e279.
          Bhagat, R.B., 1985. Mode I fracture toughness of coal. Int. J. Min. Eng. 3, 229e236.
          Chandler, M.R., Meredith, P.G., Brantut, N., Crawford, B.R., 2016. Fracture toughness
             anisotropy in shale. J. Geophys. Res. Solid Earth 121 (3), 1706e1729.
          Dugdale, D.C., 1960. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8,
             100e104.
          Eftis, J., Subramonian, N., 1978. The inclined crack under biaxial load. Eng. Fract. Mech.
             10 (1), 43e67.
          Fischer-Cripps, A.C., 2007. Introduction to Contact Mechanics, second ed. Springer.
          Geertsma, J., de Klerk, F., December 1969. A rapid method of predicting width and extent
             of hydraulically induced fractures. J. Pet. Technol. Paper SPE-2458.
          Goodman, R.E., 1976. Methods of Geological Engineering in Discontinuous Rocks. West
             Publishing.
          Griffith, A.A., 1921. The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc.
             Lond. A221, 163e198.
          Gunsallus, K.L., Kulhawy, F.H., 1984. A comparative evaluation of rock strength measures.
             Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 21 (5), 233e248.
          Hudson, J., Harrison, J., 1997. Engineering Rock Mechanics: An Introduction to the
             Principles. Pergamon.
   162   163   164   165   166   167   168   169   170   171   172