Page 168 - Applied Petroleum Geomechanics
P. 168

Basic rock fracture mechanics  161


              Inglis, C.E., 1913. Stresses in plates due to the presence of cracks and sharp corners.
                 Transactions of the Institute of Naval Architects 55, 219e241.
              Irwin, G.R., 1957. Analysis of stresses and strains near the end of a crack traversing a plate.
                 J. Appl. Mech. 24, 361e364.
              Khristianovich, S.A., Zheltov, Y.P., 1955. Formation of vertical fractures by means of highly
                 viscous liquid. In: Proc., Fourth World Petro. Congress, Rome, vol. 2, pp. 579e586.
              La Pointe, P., 2017. Special issue on Discrete Fracture Network (DFN) modeling e preface.
                 ARMA e-Newsletter, 20.
              Labuz, J.F., Shah, S.P., Dowding, C.H., 1985. Experimental analysis of crack propagation in
                 granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, 85e98.
              Lei, Q., Latham, J.-P., Tsang, C.-F., 2017. The use of discrete fracture networks for
                 modelling coupled geomechanical and hydrological behaviour of fractured rocks.
                 Comput. Geotech. 85, 151e176.
              Newland, P.L., Allely, B.H., 1957. Volume changes in drained triaxial tests on granular
                 materials. Geotechnique 7, 17e34.
              Orowan, E., 1934. Die mechanischen festigkeitseigenschaften und die realstruktur der
                 kristalle. Z. Kristallogr. 89, 327e343.
              Peng, S., Zhang, J., 2007. Engineering Geology for Underground Rocks. Springer.
              Perkins, T.K., Kern, L.R., 1961. Widths of hydraulic fractures. SPE Annual Fall Meeting,
                 Dallas, 8e11 October. SPE-89-PA.
              Rice, J.R., 1968. Mathematical analysis in the mechanics of fracture. In: Liebowitz, H. (Ed.),
                 Treatise on Fracture, vol. II. Academic, New York, pp. 191e311 chap. 3.
              Sack, R.A., 1946. Extension of Griffith’s theory of rupture to three dimensions. Proc. Phys.
                 Soc. 58 (6), 729e736.
              Schmidt, R.A., 1980. A microcrack model and its significance to hydraulic fracturing and
                 fracture toughness testing. In: Proc. 21st US Symp. on Rock Mech., pp. 581e590.
              Sneddon, I.N., 1946. The distribution of stress in the neighbourhood of a crack in in an
                 elastic solid. Proc. Roy. Soc. Lond. Math. Phys. Sci. 187, 229e260.
              Sneddon, I.N., 1966. Crack problems in the theory of elasticity. In: Shaw, W.A. (Ed.),
                 Developments in Theoretical and Applied Mechanics.
              Sneddon, I.N., Elliott, H.A., 1946. The opening of a Griffith crack under internal pressure.
                 Q. Appl. Math. 4, 262e266.
              Suni, I., 2012. Materials Science and Engineering I: ES 260 Notes. Chap. 9. Clarkson
                 University.
              Whittaker, B.N., Singh, R.N., Sun, G., 1992. Rock Fracture Mechanics: Principles, Design
                 and Applications. Developments in Geotechnical Engineering. Book 71. Elsevier.
              Zhang, Z.X., 2002. An empirical relation between mode I fracture toughness and the tensile
                 strength of rock. Int. J. Rock Mech. Min. Sci. 39, 401e406.
              Zhang, J., Bai, M., Roegiers, J.-C., Liu, T., 1999. Determining stress-dependent perme-
                 ability in the laboratory. In: Amadei, B., Kranz, R.L., Scott, G.A., Smeallie, P.H. (Eds.),
                 Proc. 37th US Rock Mech. Symp. Colorado. Rotterdam, Balkema, pp. 341e347.
              Zhang, J., Alberty, M., Blangy, J.P., 2016. A semi-analytical solution for estimating the
                 fracture width in wellbore strengthening applications. Paper SPE-180296 presented at
                 SPE Deepwater Drilling & Completions Conf. held in Galveston, TX, USA.
   163   164   165   166   167   168   169   170   171   172   173