Page 234 - Applied Petroleum Geomechanics
P. 234
In situ stress estimate 229
References
Aadnoy, B.S., 1990. In situ stress direction from borehole fracture traces. J. Pet. Sci. Eng. 4,
143e153.
Addis, M.A., Hanssen, T.H., Yassir, N., Willoughby, D.R., Enever, J., 1998. A comparison
of leak-off test and extended leak-off test data for stress estimation. Paper SPE/ISRM
47235.
Amundsen, O., 1995. Determination of In-Situ Stresses from Leak Off and Extended Leak
Off Tests in the Oseberg Field, North Sea. M.Sc. thesis, New Mexico Inst. of Mining
and Tech.
Athy, L.F., 1930. Density, porosity, and compaction of sedimentary rocks. Am. Assoc. Pet.
Geol. Bull. 14 (1), 1e24.
Barker, J.W., Wood, T.D., 1997. Estimating shallow below mud-line deepwater Gulf of
Mexico fracture gradients. Presented at the Houston AADE Chapter Annual Technical
Forum.
Barree, R.D., Barree, V.L., Craig, D.P., 2009. Holistic fracture diagnostics: consistent
interpretation of prefrac injection tests using multiple analysis methods. SPE Prod. Oper.
24 (3), 396e496. SPE 107877.
Barton, C.A., Zoback, M.D., Burns, K.L., 1988. In-situ stress orientation and magnitude at
the Fenton Geothermal Site, New Mexico, determined from wellbore breakouts.
Geophys. Res. Lett. 15, 467e470.
Baumgartner, J., Rummel, F., 1989. Experience with “fracture pressurization tests” as a stress
measuring technique in a jointed rock mass. Int. J. Rock Mech. Min. Sci. Geomech.
Abstr. 26 (6), 661e672.
Bérard, T., Cornet, F.H., 2003. Evidence of thermally induced borehole elongation: a case
study at Soultz, France. Int. J. Rock Mech. Min. Sci. 40, 1121e1140.
Breckels, I.M., van Eekelen, H.A.M., 1982. Relationship between horizontal stress and
depth in sedimentary basins. J. Pharm. Technol., 2191e2199. SPE 10336.
Cornet, F.H., Valette, B., 1984. In situ stress determination from hydraulic injection test
data. J. Geophys. Res. 89, 11527e11537.
Cui, J., Lin, W., Wang, L., Gao, L., Wang, W., Sun, D., Li, Z., Zhou, C., Qian, H.,
Peng, H., Xia, K., Li, K., 2014. Determination of three-dimensional in situ stresses by
anelastic strain recovery in Wenchuan Earthquake Fault Scientific Drilling Project
Hole-1 (WFSD-1). Tectonophysics 619e620, 123e132.
Daines, S.R., 1982. The prediction of fracture pressures for wildcat wells. J. Pharm.
Technol. 34 (4), 863e872. SPE-9254-PA.
Desroches, J., Kurkjian, A.L., 1999. Applications of wireline stress measurements. SPE
Reservoir Eng. 2, 451e461.
Detournay, E., Cheng, A.H.-D., 1988. Poroelastic response of a borehole in a non-
hydrostatic stress field. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25, 171e182.
Dohmen, T., Zhang, J., Li, C., Blangy, J.P., Simon, K.M., Valleau, D.N., Ewles, J.D.,
Morton, S., Checkles, S., 2013. A new surveillance method for delineation of depletion
using microseismic and its application to development of unconventional reservoirs.
SPE166274 presented at SPE Ann. Tech. Conf. Exhib.
Dohmen, T., Zhang, J., Barker, L., Blangy, J.P., 2017. Microseismic magnitudes and
b-values for delineating hydraulic fracturing and depletion. SPE J. 22 (5), 1624e1634.
SPE-186096.
Dolinar, D.R., 2003. Variation of horizontal stresses and strains in mines in bedded deposits
in the eastern and midwestern United States. In: Proc. 22nd Int. Conf. on Ground
Control in Mining, Morgantown, WV.