Page 24 - Applied Petroleum Geomechanics
P. 24

14    Applied Petroleum Geomechanics


             For linear elastic isotropic dry materials, the stress and strain follow Hooke’s
          law, which can be expressed as follows in the three-dimensional condition:
                                     1
                                ε x ¼  ½s x   nðs y þ s z ފ
                                     E
                                     1
                                ε y ¼  ½s y   nðs x þ s z ފ
                                     E
                                     1
                                ε z ¼  ½s z   nðs x þ s y ފ
                                     E
                                                                      (1.20)
                                      1
                               ε xy ¼   s xy
                                     2G
                                      1
                               ε xz ¼   s xz
                                     2G
                                      1
                               ε yz ¼   s yz
                                     2G
          where s and s are the normal and shear stresses, respectively; ε xy , ε xz , ε yz
          are the shear strains; n is Poisson’s ratio; E and G are Young’s and shear
          moduli, respectively.
             When any two of the moduli of E, G, n, l, and K are defined, the
          remaining ones are fixed by certain relations. Some useful relations are listed
          in Table 1.1.
             A very useful stressestrain state is the uniaxial strain condition, where
          the lateral strains are constrained (i.e., ε x ¼ ε y ¼ 0), and only the vertical



          Table 1.1 Relations to convert elastic moduli and Poisson’s ratio.
          E, Young’s modulus        K, bulk modulus      l, Lamé constant
          E ¼ 3K (1 2n)                   1 þ n          l     2n
                                    K ¼ l                  ¼
                                           3n            G   1   2n
                                         2   1 þ n         l
          E ¼ 2G (1þn)              K ¼ G                     ¼ 2n
                                         3  1   2n       l þ G
                                             2            G
                9KG                 K ¼ l þ G                 ¼ 1   2n
          E ¼                                3           l þ G
               3K þ G
                                           GE            l þ 2G
                3l þ 2G             K ¼
          E ¼ G                          9G   3E         l þ G  ¼ 2ð1   nÞ
                 l þ G
                                            E            3l þ 2G
               l                    G ¼                         ¼ 2ð1 þ nÞ
          E ¼ ð1 þ nÞð1   2nÞ            2ð1 þ nÞ         l þ G
               n
   19   20   21   22   23   24   25   26   27   28   29