Page 200 - Applied Statistics And Probability For Engineers
P. 200

c05.qxd  5/13/02  1:50 PM  Page 176 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark Files:






               176     CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS



                                    If X and Y are independent random variables,

                                                                XY     XY    0                     (5-31)




               EXAMPLE 5-31      For the two random variables in Fig. 5-16, show that   XY    0.
                                    The two random variables in this example are continuous random variables. In this case
                                 E(XY) is defined as the double integral over the range of (X, Y). That is,
                                                4 2                   4  2               4        2
                                                                   1       2 2         1     2  3
                                       E1XY 2       xy f XY  1x, y2 dx dy    16       £  x y  dx§  dy    16    y   £ x 	3 ` §
                                                0 0                   0  0               0        0
                                                  4

                                                1              1       4    1
                                                                   3
                                                     2
                                                     y  38	34  dy      £ y 	3  ` §     364	34   32	9
                                                16             6            6
                                                                       0
                                                  0
                                 Also,
                                               4 2                  4  2             4      2
                                                                 1       2         1     3
                                       E1X2        x f XY  1x, y2 dx dy         £  x  dx§  dy         £x 	3 ` §  dy
                                                                 16
                                                                                  16
                                                                                            0
                                               0 0                  0  0             0
                                               1       4        1
                                                   2
                                                   £ y 	2  ` §  38	34     316	24   4	3
                                              16       0        6
                                               4 2                  4    2             4        2
                                                                 1     2            1     2  2
                                        E1Y 2      y f XY  1x, y2 dx dy       y   £  x dx§  dy       y   £ x 	2 ` §  dy
                                                                                    16
                                                                 16
                                                                                                0
                                               0 0                  0    0             0
                                               2       4    1
                                                   3
                                                   £ y 	3  ` §     364	34   8	3
                                              16       0    8
                                    y
                                     4

                                     3
                                                         1
                                                  f  (x,y) =      xy
                                                  XY    16
                                     2
                                     1


                                     0    1    2  x
                                 Figure 5-16 Random variables
                                 with zero covariance from Example
                                 5-31.
   195   196   197   198   199   200   201   202   203   204   205