Page 189 - Applied statistics and probability for engineers
P. 189

Section 5-1/Two or More Random Variables     167


                     5-1.5  MORE THAN TWO RANDOM VARIABLES
                                         More than two random variables can be dei ned in a random experiment. Results for multiple
                                         random variables are straightforward extensions of those for two random variables. A summary is
                                         provided here.

                     Example 5-13    Machined Dimensions  Many dimensions of a machined part are routinely measured during
                                     production. Let the random variables, X , X , X 3 , and  X 4 denote the lengths of four dimensions of
                                                                     1
                                                                        2
                     a part. Then at least four random variables are of interest in this study.
                                            The joint probability distribution of random variables X , X , X ,… , X p  can be specii ed with
                                                                                             3
                                                                                      1
                                                                                         2
                                         a method to calculate the probability that X , X , X ,… , X p  assume a value in any region Rof
                                                                            1
                                                                               2
                                                                                  3
                                         p-dimensional space. For continuous random variables, a joint probability density function
                                         f X X 2 … ( x , x ,… , x p) is used to determine the probability that  X , X , X ,… , X p) ∈ R by the
                                                                                             1 (
                                                  1
                                                     2
                                         multiple integral of f X X 2 … ( x , x ,… , x p) over the region R.  2  3
                                           1
                                               X p
                                                          1   X p  1  2
                          Joint Probability
                          Density Function  A joint probability density function for the continuous random variables X , X , X ,
                                            …, X , denoted as f X X 2 … ( x , x ,… , x , satisies the following properties:
                                                                            p)
                                                                                                        1
                                                                                                           2
                                                                                                              3

                                                 p
                                                                      2
                                                                    1
                                                                X p
                                                             1
                                                   (1)  f X X 2 … ( x , x ,… , x p) ≥  0
                                                        1   X p  1  2
                                                       ∞  ∞  ∞
                                                   (2)   ∫  ∫  ??? ∫  f X X 2 … ( x , x ,… , x p) dx dx 2 …  dx p  = 1
                                                                        1
                                                                                    1
                                                                           2
                                                                    X p
                                                                1
                                                       2 ∞ 2 ∞  2 ∞
                                                   (3)  For any region B of  p-dimensional space,
                                                      1 (
                                                 P X , X ,… , X p) ∈ ⎤ 5  B ∫ ∫  f X X 2 ??? X p ( x , x ,…   , x p)  dx dx 2 …  dx p     (5-8)
                                                   ⎡
                                                                  B
                                                                   ⎦
                                                   ⎣
                                                                                              1
                                                                                     2
                                                                                  1
                                                         2
                                                                           1
                                                        ( x , x ,…

                                         Typically,  f X X 2 ??? X p  1  2  , x p) is deined over all of p-dimensional space by assuming that
                                                   1
                                                ( x , x ,… , x p) =                     ( x , x ,… , x p)  is not specii ed.
                                         f X X 2 ???  1  2   0  for all points for which  f X X 2 ???  1  2
                                           1  X p                                  1   X p
                     Example 5-14
                                                                                                    1
                                                                                                       2
                                                                                                          3
                                     Component Lifetimes  In an electronic assembly, let the random variables X , X , X , X 4  denote
                                     the lifetime of four components, respectively, in hours. Suppose that the joint probability density
                     function of these variables is
                                                  (                  2 12 e 2 ?  x 1 0 002 x 2 0 0015 3 0 0032 ?  4 x
                                                                                   2 ?
                                                                          0 001 2 ?
                                                                                       x
                                                                                        3
                                                                9
                                                         3
                                                      2
                                                    1
                                           f X X X X 4  x , x , x , x 4) 5 3  10
                                             1 2 3
                                                                for  1 x  ≥  0,  2 x  ≥  0,  3 x  ≥  0,  4 x  ≥  0
                        What is the probability that the device operates for more than 1000 hours without any failures? The requested prob-
                                 1 (
                     ability is P X >1000 ,  X 2 >1000 ,  X 3 >1000 ,  X 4 >1000), which equals the multiple integral of  f X X X X 4 ( x , x , x , x 4)
                                                                                                               3
                                                                                                          1
                                                                                                             2
                                                                                                   1 2 3
                     over the region x >1000 ,  x 2 >1000 ,  x 3 >1000 , x 4 >1000. The joint probability density function can be written as a
                                   1
                     product of exponential functions, and each integral is the simple integral of an exponential function. Therefore,
                                                   (
                                                 P X >1000 , X >1000 , X >1000 , X >1000)
                                                              2
                                                                       3
                                                     1
                                                                               4
                                                           −
                                                          −
                                                              −
                                                             .
                                                      =  e − 1 2 1 5 3  = .
                                                                 0 00055
                                            Suppose that the joint probability density function of several continuous random variables
                                         is a constant c over a region R (and zero elsewhere). In this special case,
                                                   ∫ ∫  … f X X 2  …X p  (x , x ,  … ) dx dx 2  … dx p  = ×  (volume of region  R ) = 11
                                                      ∫
                                                                                       c
                                                                1
                                                                           1
                                                                  2
                                                                      , x p
                                                        1
                                                   R
   184   185   186   187   188   189   190   191   192   193   194