Page 186 - Applied statistics and probability for engineers
P. 186

164     Chapter 5/Joint Probability Distributions


                                                   x = Number of Bars of Signal Strength
               FIGURE 5-9            y = Response time
                                      (nearest second)  1   2         3
               Conditional
                                                 4 0.750    0.400     0.091
               probability                       3 0.100    0.400     0.091
               distributions of Y                2 0.100    0.120     0.364
               given X = , f Y xu ( ) in         1 0.050    0.080     0.454
                            y
                       x
               Example 5-7.          Total         1        1         1
               Conditional Mean and
                         Variance     The conditional mean of Y given X =  x, denoted as E Y x) or  μ Y x u is,
                                                                                    u (
                                                                  u (
                                                              E Y x) ∫  y f Y xu ( y)                (5-6)
                                                                     5
                                                                       y
                                                                                          u (
                                      and the conditional variance of Y given X =  x, denoted as V Y x) or σ Y x , is
                                                                                                2
                                                                                                 u
                                                        u (
                                                                     2
                                                    V Y x) ( ∫  y − μ Y x)   f Y xu ( y) ∫ y f Y xu ( y) − μ 2 Y x

                                                                                2
                                                           5
                                                                            5
                                                                   u
                                                                                          u
                                                             y                y
               Example 5-8     Conditional Mean And Variance  For the random variables that denote times in Example 5-2,
                               determine the conditional mean for Y given that x = 1500.
                 The conditional probability density function for Y was determined in Example 5-6. Because f Yu1500 ( y) is nonzero for
               y > 1500,
                                                   (
                                    u (
                                E Y X 51500) 5  ∞ ∫  y 0 002 e 0 002 1500) 2 0 002 y )   dy 5 0 002 e 3  ∞ ∫  ye 2 20 002y   dy
                                                            (
                                                                  .
                                                          .
                                                                                      .
                                                                           .
                                                     .
                                               1500                             1500
               Integrate by parts as follows:
                            ∞              e 20 002 y  ∞  ∞  ⎛  e 20 002 y  ⎞  1500  ⎛  e 2 .  y  ∞  ⎞ ⎞
                                             .
                                                            .
                                                                                      0 002
                            ∫  ye 20 002 y  dy 5  y  2  ∫  ⎜   ⎟ ⎟  dy 5  e 2  ⎜              )   ⎟
                                                                            3
                                                                           2
                                 .
                                                                      .
                                                           .
                                                                                  0 002 2 .
                                             .
                           1500           20 002  1500  1500 ⎝ 20 002⎠  0 002  ⎝  ( ⎜ 2 .  )( 0 002  1500⎠ ⎟
                                         1500  23       e 23      e 23
                                       5      e  1              =      (2000 )
                                         0 002     (0 002 )(0 002 )  0 002
                                                     .
                                          .
                                                                  .
                                                           .
                                   3
                With the constant 0 002.  e  reapplied,
                                                       (
                                                     E Y X51500) 52000
               Practical Interpretation: If the connect time is 1500 ms, then the expected time to be authorized is 2000 ms.
               Example 5-9     For the discrete random variables in Example 5-1, the conditional mean of Y given X = 1 is obtained
                               from the conditional distribution in Fig. 5-9:
                                        (     μ     (        (      (      (
                                                                                   .
                                                                             .
                                                      .
                                                              .
                                                                     .
                                      E Y u1)5  Yu1 5 1 0 05)1 2 0 1)1 3 0 1)1  4 0 75)5 3 55
                 The conditional mean is interpreted as the expected response time given that one bar of signal is present. The conditional
               variance of Y given X = 1 is
                                                                   3 55 0 1 + (
                                                         )
                           V Y u1) ( 12 3 55 0 05 ( 2.  )   .  1  2  3 55 0 1 ( 3 − . ) 2  .  4 − .  2 2  .  0 748
                             (
                                           2
                                                          2
                                                                                             .
                                                              +
                                                                                 3 55) 0 75 =
                                                       .
                                                            .
                                 5
   181   182   183   184   185   186   187   188   189   190   191