Page 185 - Applied statistics and probability for engineers
P. 185

Section 5-1/Two or More Random Variables     163



                     Example 5-6     Conditional Probability  For the random variables that denote times in Example 5-2, deter-
                                     mine the conditional probability density function for Ygiven that X =  x.
                        First the marginal density function of x is determined. For x > 0,

                                                                                     ⎛  20 002 y  ∞ ⎞
                                                                                        .
                                           f X ( x) ∫  310 26 e 20 001 x20 002.  y  dy 5 36  10 26 e 20 001 x  ⎜  e  ⎟
                                                            .
                                                                                 .
                                               5 6
                                                                                            x ⎠
                                                 x                                   ⎜ ⎝ 20.0002 ⎟
                                                              ⎛
                                                                 0 002x
                                                                2 .
                                                      2
                                                       6 2 .
                                                                        0 003e
                                               5 63 10 e  0 001x e 0 002 ⎠ ⎞ ⎟  5 .  2 0.0003x  for  x .  0
                                                              ⎜
                                                              ⎝ .
                                                             .
                        This is an exponential distribution with λ = 0 003. Now for 0 , x and  x  , y, the conditional probability density
                     function is
                                                                          .
                                                                     .
                                     f Y x| ( y)5  f XY ( x, y) /  f x ( )5  6  310 26 e 20 001 x20 002 y  5 0 002e  0 002x 2 0 002y  for  0 , and  x ,  y
                                                                                          .
                                                                                     .
                                                                                .
                                                                               0
                                                                                                     x
                                                      x
                                                                      .
                                                               0 003 e 20 003 x
                                                                .
                        The conditional probability density function of Y, given that X = 1500, is nonzero on the solid line in Fig. 5-8.
                                                                                                 (
                        Determine the probability that Y exceeds 2000, given that x = 1500. That is, determine P Y . 2000 u X 51500) ?
                     The conditional probability density function is integrated as follows:
                                       (
                                                                                    (
                                                                                  .
                                      P Y . 2000 u  X 51500) 5  ∞ ∫  f Y 1500u ( )   ∞ ∫  0 002 e 0 002 1500) 2 0 0 . 002y   dy
                                                                    y dy 5
                                                                             .
                                                           2000          2000
                                                                 ⎛  e 2 . 0 002y  ∞  ⎞  ⎛  e 2 24  ⎞
                                                           0 002e ⎜
                                                                                                .
                                                         5 .    3           ⎟ 5 .    3  ⎜   ⎟  5 0 368
                                                                               0 002e
                                                                 ⎜2 .    2000⎠ ⎟      ⎝ 0 002⎠
                                                                    0 002
                                                                                        .
                                                                 ⎝
                     Example 5-7     For the joint probability distribution in Fig. 5-1, f Y x| ( y) is found by dividing each f XY ( x y) by f x).
                                                                                                                 (
                                                                                                          ,
                                                                                                                x
                                     Here,  f x) is simply the sum of the probabilities in each column of Fig. 5-1. The function  f Y x| ( y)
                                            (
                                           x
                     is shown in Fig. 5-9. In Fig. 5-9, each column sums to 1 because it is a probability distribution.
                        Properties of random variables can be extended to a conditional probability distribution of Y given X =  x. The usual
                     formulas for mean and variance can be applied to a conditional probability density or mass function.
                                            y
                                         1500
                                            0
                                             0    1500          x
                                         FIGURE 5-8  The conditional probability density function for  Y , given that
                                         x =1500, is nonzero over the solid line.
   180   181   182   183   184   185   186   187   188   189   190