Page 182 - Applied statistics and probability for engineers
P. 182

160     Chapter 5/Joint Probability Distributions


                                                         x = Number of Bars of Signal Strength
                                                                               Marginal
                                    y = Response time                          Probability
                                     (nearest second)  1    2        3         Distribution of Y
                                                 4 0.15     0.1      0.05      0.3
                                                 3 0.02     0.1      0.05      0.17
               FIGURE 5-6                        2 0.02     0.03     0.2       0.25
                                                 1 0.01     0.02     0.25      0.28
               Marginal probability
               distributions of X                  0.2      0.25     0.55
               and Y  from Fig. 5-1.              Marginal Probability Distribution of X


                                     For continuous random variables, an analogous approach is used to determine marginal
                                   probability distributions. In the continuous case, an integral replaces the sum.


                        Marginal
                Probability Density   If the joint probability density function of random variables X and Y is f XY ( x y), the
                                                                                                   ,
                        Function
                                      marginal probability density functions of X and Y are
                                                                                         )
                                                                 )


                                                                               5
                                                       5
                                                  f X ( x) ∫  f XY ( x, y dy and  f Y ( y) ∫  f XY ( x, y dx  (5-3)
                                      where the irst integral is over all points in the range of ( , ) for which X =  x and
                                                                                      Y
                                                                                    X

                                      the second integral is over all points in the range of ( , ) for which Y =  y.
                                                                                  Y
                                                                                X
                                                                                         (
                                     A probability for only one random variable, say, for example, P a, , )
                                                                                            X
                                                                                                b , can be found
                                   from the marginal probability distribution of X or from the integral of the joint probability
                                   distribution of X and Y as
                                                                                ⎤
                                                                                              )
                                              (
                                                                                              (
                                                                              (
                                                                              )
                                                              x dx 5
                                                                                ⎥
                                                      b 5
                                             P a ,  X , ) ∫ b  f X ( )  b ∫ ⎡ ⎢ ∫ ∞  f x, y dy dx 5  b  ∞ ∫ ∫  f x, y dydx
                                                                                        ∞
                                                          a          a 2 ⎣ ∞    ⎦     a  −∞
               Example 5-4     Server Access Time  For the random variables that denote times in Example 5-2, calculate the
                               probability that Y exceeds 2000 milliseconds.
                                                             ,
                 This probability is determined as the integral of  f XY ( x y) over the darkly shaded region in Fig. 5-7. The region is
               partitioned into two parts and different limits of integration are determined for each part.
                                                                                              ⎞
                                                                ⎞
                          P Y . 2000) 5  2000 ⎛ ⎜ ∫ ∞  6 310 26 e 20 001 x20 002  y   dy dx 1  ∞ ∫  ⎛  ∞ ∫ ⎜  6  310 e  0 001 2 0 002y  dy dx
                            (
                                        ∫
                                                       .
                                                                                    .
                                                                                2
                                                                                         .
                                                           .
                                                                                 6 2
                                                                                      x
                                                                               0
                                                                                              ⎟
                                                                ⎟
                                        0 ⎝  2000               ⎠     2000 ⎝  x               ⎠

               The irst integral is
                             2000⎛  e 2 0 002y.  ∞  ⎞  63 10 2 6  2000       6 10 2 6  ⎛  1 e2  2 2 ⎞ ⎞
                                                                              3
                           6
                          2
                                                                     .
                     63 10    ∫  ⎜        ⎟ e 2 0 001x.   dx  5  e 2 4  ∫  e 2 0 001x  dx5  e 2 4   ⎜  ⎟  50 0475
                                                                                                  .
                                                                                          .
                                                                               .
                                   .
                                                       .
                              0 ⎝ ⎜  2 0 002  2000⎠ ⎟  0 0 002   0            0 002    ⎝  0 001 ⎠
               The second integral is
                                 ∞  ⎛  e 2 0 002y  ∞ ⎞  63 10 2 6  ∞        63 10 2 6  ⎛  e 2 6  ⎞
                                       .
                              2
                               6
                                                                     .
                                                .
                                                                                              .
                         63 10    ∫  ⎜      ⎟ e 2 0 001x  dx 5  ∫  e 2 0 003x   dx 5  ⎜   ⎟  5 0 0025
                                      0 002 ⎟
                                                                               .
                                                                                      .
                                2000 ⎝ ⎜  2 .  ⎠         0 0 . 002  2000      0 002 ⎝  0 003⎠
                                           x
   177   178   179   180   181   182   183   184   185   186   187