Page 183 - Applied statistics and probability for engineers
P. 183

Section 5-1/Two or More Random Variables     161


                                            y
                     FIGURE 5-7
                     Region of
                     integration for the
                     probability that
                     Y > 2000 is darkly   2000
                     shaded, and it is
                     partitioned into two
                     regions with x ,2000   0
                     and x .2000.            0      2000        x


                     Therefore,
                                                       (
                                                      P Y . 2000) 50 0475 10 0025 50.
                                                                   .
                                                                           .
                        Alternatively, the probability can be calculated from the marginal probability distribution of Y as follows. For y > 0,
                                                                                                    0 001x ⎞
                               f Y ( y) ∫ y  310 26 e 20 001 x 2 0 002.  y  dx 5 36  10 26 e 20 002 y   ∫ y  e 20 001 x  dx 5 3 10 e  0 002y  ⎛ ⎜  e 2 .  y ⎟
                                                                                         2
                                                                                          6 2 .
                                               .
                                                                     .
                                                                            .
                                                                                    6
                                   5 6
                                                                                                   0 001 ⎟
                                                                                                 ⎝
                                     0                                   0 0                     ⎜2 .   0⎠
                                                  ⎛
                                                        .
                                                   1
                                                                        .
                                           6 2 .
                                                                                 .
                                          2
                                   5 63 10 e  0 002y 12e . 2 0 001y ⎞ ⎟  5 63 10 2 3  e 2 0 002y ( 12e 2 0 001y ) for  y    .  0
                                                  ⎜
                                                     0 001 ⎠
                                                  ⎝
                        We have obtained the marginal probability density function of Y. Now,
                                                                                                  .
                                (
                              P Y . 2000) 5 310 23  ∞ ∫  e 20 002 y  1  (  2  e 20 001 y )   dy 5 36  10 23  ⎢ ⎛ ⎡ ⎜  e 20 0 . 002y  ∞  ⎞ ⎟ 2⎜ ⎛  e 2 0 003y  ∞  ⎞ ⎤ ⎥
                                                                                                        ⎟
                                                                .
                                                       .
                                           6
                                                                                    .
                                                                                                 0 003
                                                                                ⎣                        ⎦
                                                  2000                           ⎜ ⎢ ⎝ 2 0 002  2000⎠ ⎟  ⎜ ⎝ 2 .  2000⎠ ⎟ ⎥ ⎥
                                                  ⎡ e 24   e 26  ⎤
                                                23
                                         5 310    ⎢     −      ⎥  5 0 05
                                           6
                                                                   .
                                                    .
                                                  ⎣ 0 002  0 003 ⎦
                                                           .
                                            Also, E X) and V X) can be obtained by irst calculating the marginal probability distribu-

                                                  (
                                                          (
                                                                    (
                                                                            (
                                         tion of X and then determining E X) and V X) by the usual method. In Fig. 5-6, the marginal
                                         probability distributions of X and Y are used to obtain the means as
                                                                                13
                                                                            .
                                                                        12
                                                             E X ( ) ( ) (0 25 ) (0 55.  )52 35.
                                                                 51 0 2
                                                                      .
                                                             E Y)=1(0.28)+2(0.25)+3(0.177)+4(0.3)=2.49
                                                              (
                     5-1.3  CONDITIONAL PROBABILITY DISTRIBUTIONS
                                         When two random variables are deined in a random experiment, knowledge of one can change

                                         the probabilities that we associate with the values of the other. Recall that in Example 5-1, X
                                         denotes the number of bars of service and Y denotes the response time. One expects the probability
                                         Y51 to be greater at X53 bars than at X51 bar. From the notation for conditional probability in
                                                                                                                  1)
                                                                                        (
                                                                                                        (
                                         Chapter 2, we can write such conditional probabilities as P Y 51u  X 53) and P Y 51u  X 5 ?
                                         Consequently, the random variables X and Y are expected to be dependent. Knowledge of the value
                                         obtained for X changes the probabilities associated with the values of Y.
                                            Recall that the dei nition of conditional probability for events A  and B  is P B Au (  )  =
                                          (
                                         P A>  B) / P A). This dei nition can be applied with the event A dei ned to be X =  x and event
                                                    (
                                         B deined to be Y =  y.
   178   179   180   181   182   183   184   185   186   187   188