Page 14 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 14

CHAPTER


                  Nature’s Learning Rule:

                  The Hebbian-LMS                                            1

                  Algorithm



                                Bernard Widrow, Youngsik Kim, Dookun Park, Jose Krause Perin
                        Department of Electrical Engineering, Stanford University, Stanford, CA, United States


                  CHAPTER OUTLINE
                   1. Introduction ......................................................................................................... 1
                   2. ADALINE and the LMS Algorithm, From the 1950s .................................................. 3
                   3. Unsupervised Learning With Adaline, From the 1960s............................................ 5
                   4. Robert Lucky’s Adaptive Equalization, From the 1960s ........................................... 7
                   5. Bootstrap Learning With a Sigmoidal Neuron .......................................................10
                   6. Bootstrap Learning With a More “Biologically Correct” Sigmoidal Neuron .............13
                     6.1 Training a Network of Hebbian-LMS Neurons......................................... 17
                   7. Other Clustering Algorithms ................................................................................20
                     7.1 K-Means Clustering ............................................................................. 20
                     7.2 Expectation-Maximization Algorithm ..................................................... 21
                     7.3 Density-Based Spatial Clustering of Application With Noise Algorithm ..... 21
                     7.4 Comparison Between Clustering Algorithms ........................................... 21
                   8. A General Hebbian-LMS Algorithm.......................................................................21
                   9. The Synapse ......................................................................................................22
                  10. Postulates of Synaptic Plasticity .........................................................................25
                  11. The Postulates and the Hebbian-LMS Algorithm ...................................................26
                  12. Nature’s Hebbian-LMS Algorithm.........................................................................26
                  13. Conclusion.........................................................................................................27
                  Appendix: Trainable Neural Network Incorporating Hebbian-LMS Learning ...................27
                  Acknowledgments.....................................................................................................29
                  References ...............................................................................................................29


                  1. INTRODUCTION
                  Donald O. Hebb has had considerable influence in the fields of psychology and
                  neurobiology since the publication of his book The Organization of Behavior in
                  1949 [1]. Hebbian learning is often described as: “neurons that fire together wire
                  together.” Now imagine a large network of interconnected neurons whose synaptic
                  weights are increased because the presynaptic neuron and the postsynaptic neuron


                                                                                           1
                  Artificial Intelligence in the Age of Neural Networks and Brain Computing. https://doi.org/10.1016/B978-0-12-815480-9.00001-3
                  Copyright © 2019 Elsevier Inc. All rights reserved.
   9   10   11   12   13   14   15   16   17   18   19