Page 721 - Automotive Engineering Powertrain Chassis System and Vehicle Body
P. 721

CHAP TER 2 1. 1       Interior noise: Assessment and control

                 Substituting equation (E21.1.16) into equation     Consider what happens to equation (E21.1.15) when
               (E21.1.15) yields                                  there is a truly rigid termination to tube, i.e. jZ ML j/N
                 Z MO     r þ ix þ i tan kL
                      ¼                              (E21.1.17)      Z MO    Z R þ i tan kL    Z ML
                 r c 0 S  1 þ i½ðr þ ixÞ tan kLŠ                          ¼                          ¼ Z R
                  0
                                                                    r c 0 S  1 þ iZ R tan kL  r c 0 S
                                                                                            0
                                                                     0
                 Now separate the real and the imaginary parts. Take
                                                                     Z MO   ðZ R þ i tan kLÞð1   iZ R tan kLÞ
               the denomintor of equation (E21.1.17) first. Then           ¼
                                                                                        2
                                                                    r c 0 S        1 þ iZ tan kL
                                                                                             2
                                                                     0
                                                                                        R
                 D ¼ 1 þ ir tan kL   x tan kL
                                                     (E21.1.18)      Z MO          2                       2
                 D ¼ð1   x tan kLÞþ ir tan kL                       r c 0 S  ¼ Z R   iZ tan kL þ i tan kL þ Z R tan kL
                                                                                   R
                                                                     0

                                                                                      2
                                                                                                   2
               multiplying equation (E21.1.18) by its complex conju-  Z MO  Z R 1   tan kL þ ið1   Z Þtan kL
                                                                                                   R
               gate yields                                          r c 0 S  ¼       1 þ Z tan kL
                                                                                          2
                                                                                              2
                                                                     0
                                                                                           R
                                                                                      2
                      *
                                                                                                   2
                 D   D ¼½ð1   x tan kLÞþ ir tan kLŠ                  Z MO   Z R 1   tan kL   ið1   Z Þtan kL
                                                                                                   R
                                                                          ¼       2        þ      2
                                                                                      2
                                                                                                      2
                            ½ð1   x tan kL   ir tan kLފ            r c 0 S  1 þ Z tan kL    1 þ Z tan kL
                                                                     0
                                                                                                  R
                                                                                  R
                                       2
                                              2
                                          2
                      *
                 D   D ¼ð1   x tan kLÞ þr tan kL                                                         (E21.1.22)
                                                    2
                                              2
                                          2
                      *
                 D   D ¼ 1   2x tan kL þ x tan kL þ r tan kL      When Z R /N the reactance /0 when
                                 2
                                     2
                            2
                      *
                 D   D ¼ðx þ r Þtan kL   2x tan kL þ 1
                                                                         1
                                                     (E21.1.19)      i       / 0   i:e:  cot kL ¼ 0
                                                                       tan kL
                                                                  i:e:
                 Multiplying the numerator of equation (E21.1.17)by
               the complex conjugate of equation (E21.1.18) gives:  for  k n L ¼ð2n   1Þ   p  n ¼ 1; 2; 3; 4; .
                                                                                       2
                                                                    2pf      ð2n   1Þp     2n   1 c
                       *
                 N   D ¼½r þ iðx þ tan kLފ                           c  L ¼    2      f ¼   4   L
                            ½ð1   x tan kLÞ  ir tan kLŠ                                                  (E21.1.23)

                                            2
                       *
                 N   D ¼ðr   rx tan kLÞ  ir tan kL                  Under these conditions, flow reactance is zero and the
                                                                  input mechanical impedance is a function of flow re-
                                   2
                                                        2
                           þ i x   x tan kL þ tan kL   x tan kL
                                                                  sistivity only.
                                            2
                           þ xr tan kL þ r tan kL

                                  2
                                                           2
                                              2
                       *
                 N   D ¼ r þ r tan kL þ i x   x tan kL   x tan kL
                                                                  Appendix 21.1F: The derivation of
                                      2
                           þ tan kL   r tan kL
                                                                  the linearised mass conservation
                                                     2
                                                2
                       *
                               2
                 N   D ¼ r tan kL þ 1 þ i x   x þ r tan kL        equation (after Fahy and Walker,

                                 2
                             x tan kL þ tan kL                    1998)

                       *
                               2
                 N   D ¼ r tan kL þ 1
                                                                  The net rate of mass inflow into a 1-D control volume of
                                                                                       2
                                    2
                                        2
                                                         2
                           þ i x   x þ r   1 tan kL   x tan kL    cross-sectional area S (m ) length dx (m) is:
                                                     (E21.1.20)
                                                                             "                  #
                                                                                      vðr TOT uÞ
                 So equation (E21.1.17) becomes (using equations    r TOT uS   r TOT u þ      dx S
               (E21.1.20) and (E21.1.19) for numerator and de-                           vx
               nominator respectively):                                   vðr TOT uÞ
                                                                      ¼      vx    dxS                    (F21.1.1)
                                     2
                 Z MO           rðtan kL þ 1Þ
                      ¼
                          2
                               2
                 r c 0 S  ðx þ r Þtan kL   2x tan kL þ 1            This net inflow of mass must be balanced by the in-
                                   2
                  0
                                 2
                                     2
                                                      2
                           i½x  ðx þ r   1Þtan kL   x tan kLŠ     crease in mass in the control volume (the principle of
                         þ                                        conservation of mass) which is given by:
                                   2
                               2
                                       2
                             ðx þ r Þtan kL   2x tan kL þ 1         Rate of increase in mass within control volume ¼
                                                     (E21.1.21)   vr TOT  dxS
                                                                   vt
                    732
   716   717   718   719   720   721   722   723   724   725   726