Page 370 - Autonomous Mobile Robots
P. 370

360                                    Autonomous Mobile Robots

                                to form the joint state vector x B  we only need to transform the features of
                                                         F+E
                                the second map to reference B using the fact that F i = E j :

                                                                       ˆ x
                                                                       B    
                                                                        F
                                                           B        B    E j 
                                                          ˆ x      ˆ x F i  ⊕ ˆ x E 0  
                                                 ˆ x B  =  F   =       .                (9.23)
                                                  F+E      B           .    
                                                          ˆ x           .
                                                           E                
                                                                    ˆ x B  ⊕ ˆ x E j
                                                                     F i  E m
                                The covariance P B  of the joined map is obtained from the linearization of
                                               F+E
                                Equation (9.23), and is given by:
                                                      B
                                                         T
                                                                E j T
                                           P B  = J F P J + J E P J
                                            F+E       F F       E  E

                                                       B     B  T
                                                     P      P J         0     0
                                                =      F B   F 1 T  +         E j T       (9.24)
                                                              B
                                                    J 1 P  J 1 P J      0  J 2 P J
                                                        F     F 1             E  2
                                where
                                                       ∂x B               I
                                                          F+E
                                                  J F =    B     B  E j  =
                                                         ∂x     (ˆ x ,ˆ x )  J 1
                                                           F    F  E
                                                       ∂x B               0
                                                  J E =   F+E     E j  =
                                                                B
                                                              (ˆ x ,ˆ x )  J 2
                                                         ∂x     F  E
                                                           E j
                                                           E
                                                                B  E j  	    
                                                   0  ...  J 1⊕ ˆ x , ˆ x  ... 0
                                                                F i  E 0
                                                 .
                                                                             
                                            J 1 =  . .         . . .        . 
                                                                             .
                                                                             . 
                                                                B  E j  	    
                                                   0  ··· J 1⊕ ˆ x , ˆ x  ... 0
                                                                F i  E m
                                                        B  E j  	                
                                                   J 2⊕ ˆ x , ˆ x  ···    0
                                                        F i  E 0
                                                        .        .         .
                                                                                 
                                                        .        .         .
                                                                                 
                                                        .         .        .      
                                            J 2 = 
                                                                             E j  	 
                                                                          B
                                                        0        ··· J 2⊕ ˆ x , ˆ x
                                                                          F i  E m
                                   Obtaining vector ˆ x B  with Equation (9.23) is an O(m) operation. Given
                                                  F+E
                                that the number of nonzero elements in J 1 and J 2 is O(m), obtaining matrix
                                                                    2
                                P B   with Equation (9.24) is an O(nm + m ) operation. Thus when n   m,
                                  F+E
                                map joining is linear with n.
                                 © 2006 by Taylor & Francis Group, LLC
                                FRANKL: “dk6033_c009” — 2006/3/31 — 16:43 — page 360 — #30
   365   366   367   368   369   370   371   372   373   374   375