Page 144 - Basic Structured Grid Generation
P. 144

Differential models for grid generation  133

                             2
                            ∂ x      x i+1,j − 2x i,j + x i−1,j
                                   =                                                       (5.69)
                            ∂ξ 2            ( ξ) 2
                                 i,j
                             2
                            ∂ x      x i,j+1 − 2x i,j + x i,j−1
                                   =                                                       (5.70)
                            ∂η 2  i,j       ( η) 2
                           ∂ x       x i+1,j+1 + x i−1,j−1 − x i−1,j+1 − x i+1,j−1
                            2
                                   =                                     ,                 (5.71)
                           ∂ξ∂η  i,j              4( ξ)( η)
                                                                                  2
                                                                                     2
                                                                          2
                                                                             2
                                                                     2
                        with similar expressions for the second derivatives ∂ y/∂ξ ,∂ y/∂η ,∂ y/∂ξ∂η.
                          Equations (5.3) can now be written in the approximate form
                                      (x i+1,j − 2x i,j + x i−1,j )  (x i,j+1 − 2x i,j + x i,j−1 )
                                (g 22 ) i,j       2         + (g 11 ) i,j       2
                                              ( ξ)                          ( η)
                                            (x i+1,j+1 + x i−1,j−1 − x i−1,j+1 − x i+1,j−1 )
                                   −2(g 12 ) i,j                                  = 0,     (5.72)
                                                          4( ξ)( η)
                        with a similar expression for y instead of x. Re-arranging, we get

                         2(g 22 ) i,j  2(g 11 ) i,j  (g 22 ) i,j         (g 11 ) i,j
                                 +          x i,j =      (x i+1,j + x i−1,j ) +  (x i,j+1 + x i,j−1 )
                           ( ξ) 2    ( η) 2        ( ξ) 2                 ( η) 2
                                                           (x i+1,j+1 + x i−1,j−1 − x i−1,j+1 − x i+1,j−1 )
                                                  −2(g 12 ) i,j
                                                                         4( ξ)( η)
                                                                                           (5.73)
                        plus a similar equation for y.
                          If we now put

                                        2(g 22 ) i,j  2(g 11 ) i,j       (g 22 ) i,j
                                 b i,j =        +          ,  a i,j = c i,j =   ,
                                         ( ξ) 2    ( η) 2                 ( ξ) 2
                                       (g 11 ) i,j
                                 d i,j =     (x i,j+1 + x i,j−1 )
                                       ( η) 2
                                                  (x i+1,j+1 + x i−1,j−1 − x i−1,j+1 − x i+1,j−1 )
                                      −2(g 12 ) i,j ×
                                                                4( ξ)( η)
                                       (g 11 ) i,j
                                 e i,j =     (y i,j+1 + y i,j−1 )
                                       ( η) 2
                                                  (y i+1,j+1 + y i−1,j−1 − y i−1,j+1 − y i+1,j−1 )
                                      −2(g 12 ) i,j ×                                  ,
                                                                4( ξ)( η)
                        we get an equation of the form (5.41), and a similar one for y:

                                           −a i,j x i−1,j + b i,j x i,j − c i,j x i+1,j = d i,j
                                           −a i,j y i−1,j + b i,j y i,j − c i,j y i+1,j = e i,j .  (5.74)
                          These equations may be solved ‘line-by-line’ at fixed j by the Thomas Algorithm,
                        as shown in Fig. 5.3. The method is iterative, and an initial guess for the values of x
                        and y at the interior grid nodes, given the values of x and y at the boundary nodes,
   139   140   141   142   143   144   145   146   147   148   149