Page 174 - Basic Structured Grid Generation
P. 174

Variational methods and adaptive grid generation  163

                        Here we have
                                                             2
                                                                           2
                                            ˜ g 11 = 1 + (1 − 2χ) = 2 − 4χ + 4χ .          (6.35)
                        More generally, the program discretizes the non-linear eqn (6.32) as
                                              	    2  
    	     2
                                                ˜ g 11 χ     ˜ g 11 χ
                                                   ξ             ξ
                                                         −
                                                 ϕ 2    1     ϕ 2     1
                                                      i+            i−
                                                        2             2  = 0,
                                                          ξ
                        and takes
                                	    2
                                 ˜ g 11 χ
                                     ξ         ˜ g 11 χ ξ           ˜ g 11 χ ξ  χ i+1 − χ i
                                           =             (χ ξ )  1 =
                                   ϕ 2           ϕ 2    1    i+  2   ϕ 2    1      ξ
                                        i+  1         i+  2               i+  2
                                          2
                        with, similarly,
                                         	     2
                                           ˜ g 11 χ
                                               ξ         ˜ g 11 χ ξ  χ i − χ i−1
                                                     =                         .
                                             ϕ 2          ϕ 2     1     ξ
                                                  i−  1         i− 2
                                                    2
                        Thus, re-arranging terms, we have


                                    1    ˜ g 11 χ ξ         ˜ g 11 χ ξ    ˜ g 11 χ ξ
                                                   χ i−1 −            +              χ i
                                    ξ     ϕ 2     1           ϕ 2    1     ϕ 2    1
                                                i−                 i+           i−
                                                  2                  2            2


                                         ˜ g 11 χ ξ
                                     +            χ i+1  = 0.                              (6.36)
                                          ϕ 2    1
                                               i+
                                                 2
                          This gives a tridiagonal matrix equation for χ i , i = 1, 2,...,(m − 1), subject to the
                        boundary conditions χ 0 = 0, χ 1 = 1, which may be solved by the Thomas Algorithm or
                        by SOR. The elements of the matrix ‘lag’ the solution at each iteration. The idea here is
                        that we guess an initial distribution for χ(ξ), for example a uniform distribution χ = ξ,
                        with corresponding values of the matrix elements to start the iteration. Then, having
                        solved the matrix equation, we evaluate the updated values of the matrix elements
                        according to the new values of χ and repeat the process.
                          The program on the disk evaluates the lagged elements as

                                   ˜ g 11 χ ξ    ˜ g 11            ˜ g 11   χ i+1 − χ i
                                             =          (χ ξ )  1 =                    ,
                                    ϕ 2    1     ϕ 2   1    i+  2  ϕ 2   1      ξ
                                         i+          i+                i+
                                           2           2                 2

                                   ˜ g 11 χ ξ    ˜ g 11            ˜ g 11   χ i − χ i−1
                                             =          (χ ξ )  1 =                    ,
                                    ϕ 2    1     ϕ 2   1    i−  2  ϕ 2   1      ξ
                                         i−          i−                i−
                                           2           2                 2
                        with simple averaging to give

                                             ˜ g 11    1   ˜ g 11      ˜ g 11
                                                    =              +         ,
                                             ϕ 2   1   2   ϕ 2         ϕ 2
                                                 i+            i+1         i
                                                   2

                                             ˜ g 11    1   ˜ g 11    ˜ g 11
                                                    =            +           .
                                             ϕ 2   1   2   ϕ 2       ϕ 2
                                                 i−            i         i−1
                                                   2
   169   170   171   172   173   174   175   176   177   178   179