Page 185 - Basic physical chemistry for the atmospheric sciences
P. 185

Gibbs energies, enthalpies, and entropies      1  1  1

                                                  t
                                  Appendix V  (Con . )
            Chemical                       t1G?       t1H?         so
            formuJa h       Name         (kJ mo - J  1)   (kJ  mol -  1 )   ( J  deg - 1  mol - 1 )

            S(s)     Sulfur (rhombic)         0         0          3 1 . 9
            S z(g)   Sulfur gas              80.8     1 3 0.0     228 .0
                        d
            H2S(g)   Hy r ogen  sulfide    -  3 3 . 6   -  2 0.6   205 .7
            H2S(aq)   Hydrogen  sulfide    -  2 7.4   - 39. 3      1 2 3 . 0
            HS - (aq)   Hydrogen  sulfide ion   1 2 . 6    -  1 7 . 2    62.8
                       (or bisulfide)
            s2 - (aq)   Sulfide              86 2      32.6       -  1 6.7
                                               .
            S02( g)   Sulfur dioxide      -  3 00.2   -  2 96.9   248. 1
            S03(g)   Sulfur trioxide      -  3 69.9   -  3 95 .0   256. 1
            so� - (aq)  Sulfate ion       -  7 42 .0   -  9 07. 5    20
                -
            H  S 03 ( aq)  Hydrogen  sulfite ion   -  5 27 .73   -  6 26.22   1 3 9.7
                       (or bisulfite)
                -
            HS04 ( aq)  Hydrogen  sulfate ion   -  7 52.9   - 885 .8   1 2 6.8
                       (or bisulfate)
            U  ( s)   Uranium                 0         0          50. 3
            U02(s)    Uraninite           -  1 03 1 . 8   - 1 0 84. 5    77 .9
            Zn(s)    Zinc                     0         0          4 1 .6
            Zn(g)    Zinc gas                95 .0     1 3 0.5      14.2
            ZnO(s)   Zinc oxide           -  3 1 8 . 3    -  3 48. 3    43. 6 4
            Zn2 + (aq)   Zinc  ion        -  1 47. 3    -  1 52. 3   -  1 1 2

            " T  he  numbers  in  the  table  have different  accuracies ,   and  may  change as new
            data becomes available .
              The  molar  standard  free  energy  change  for  a  chemical  reaction  (t1G0)  is
            given  by  Eq.  (2.34).  The  molar  standard  enthalpy  change  for  a  chemical
            reaction  (!1-mx)  is  given  by  Eq.  (2. 14).  The  change  in  the  molar  absolute
            entropy  for  a  chemical  reaction  (t1S0)  is  given  by  Eq.  (2.24).  To  obtain  the
            molar Gibbs free energy change for a chemical reaction at temperature  T (i .e . ,
            SG)  use  the  following  approximation  to  the  Gibbs-Helmholtz  equation :  t1G
             =  !1�,  -  T  t1S0,  which assumes  that  t1Hrx  and  t1S  do  not  differ greatly  from
                                 l
            t1�x  and  t1S0,  respective y .   The  equilibrium constant  for a  chemical  reaction
             under standard  conditions  is related  to t1G1  by  Eq.  (2 .44) ,  and at  temperature
             T  i t  is  related to t1G}  by  Eq. (2.42).
             "s = solid ;  1  =  l iquid ;  g= gas ; aq = dissolved  in water at a concentration of I  M.
   180   181   182   183   184   185   186   187   188   189   190