Page 255 - Biaxial Multiaxial Fatigue and Fracture
P. 255

Fatigue Analysis of Multiaxially Loaded Components with the FE-Postprocessor FEMFAT-MAX   239

          REFERENCES

          1.  Eichlseder W.  (1989), Rechnerische Lebensdaueranalyse von Nutzfahneugkomponenten
             rnit der Finite Elemente Methode, Dissertation, University of Technology Graz, Austria.
          2.  Eichlseder W. and Unger B. (1994), Prediction of the Fatigue Life with the Finite Element
             Method, SAE Paper 940245.
          3.  Unger B.,  Eichlseder W. and Raab G. (1996), Numerical Simulation of Fatigue Life - Is it
             more than a prelude to tests?, Proc. Fatigue'96, Berlin.
          4.  Steinwender G., Gaier C.  and Unger B.  (1998), Improving the Life Time of Dynamically
             Loaded Components by Fatigue Simulation, SAE Paper 982220, pp. 465-470.
          5.  Gaier  C.,  Unger B. and Vogler J.  (1999),  Theory and Application of FEMFAT - a FE-
             Postprocessing Tool for Fatigue Analysis, Proc. Fatigue'99, Beijing, pp. 821 -826.
          6.  Gaier C., Steinwender G. and Dannbauer H. (ZOOO), FEMFAT-MAX: A FE-Postprocessor
             for  Fatigue  Analysis  of  Multiaxially Loaded  Components, NAFEMS-Seminar Fatigue
             Analysis, Wiesbaden, Germany.
          7.  German  FKM  Guiding  Rule  (1 998),  Rechnerischer  Festigkeitsnachweis  fuer
             Maschinenbauteile, VDMA Verlag Frankfurt/Main, 3d edition.
          8.  Nokleby J. 0. (1981), Fatigue under Multiaxial Stress Conditions, Rep. MD-81001, Div.
             Mach. Elem., The Norway Inst. Technol., Trondheim,.
          9.  Zenner H., Heidenreich R. and Richter I. (1985), Fatigue Strength under Nonsynchronous
             Multiaxial Stresses, Z. Werkstoffiech. 16, Germany, pp. 101-1 12.
          10.  Sanetra C.  and  Zenner H.  (1991), Betriebsfestigkeit bei  mehrachsiger Beanspruchung
             unter Biegung und Torsion, Konstruktion 43, Springer-Verlag, Germany, pp. 23-29.
          11.  Chu  C. C.,  Conle F. A.  and Huebner A. (1996), An Integrated  Uniaxial and Multiaxial
             Fatigue Life Prediction Method, VDI Berichte Nr. 1283, Germany, pp. 337-348.
          12.  Papadopoulos I.  V.,  Davoli  P.,  Gorla  C.,  Filippini  M.  and  Bernasconi A.  (1997),  A
             comparative study of multiaxial high-cycle fatigue criteria  for metals, Int.  J. Fatigue, Vol.
             19, No. 3, pp. 219-235.
          13.  Socie D. F. and Marquis G. B. (2000), Multiaxial Fatigue, SAE, Warrendale, U.S.A.
          14.  Matsuishi M.,  and Endo T.  (1968), Fatigue of Metals Subjected to Varying Stress, Proc.
             Kyushi Branch JSME, pp. 3740.
          15.  Simbuerger A.  (1975), Festigkeitsverhalten zaeher  Werhtoffe bei  einer  mehrachsigen
             phasenverschobenen  Schwingbeanspruchung  rnit  koerperfesten  und  veraenderlichen
             Hauptspannungsrichtungen, Fraunhofer Institute Structural Durability (LBF), Darrnstadt,
             Germany, Report Nr. FB- 121.
          16.  Sonsino C. M.  and  Gmbisic V.  (1985), Mechanik von Schwingbruechen an gegossenen
             und  gesinterten  Konstruktionswerkstoffen  unter  mehrachsiger  Beanspruchung,
             Konstruktion 37, Springer-Verlag, Germany, pp. 261-269.
          17.  Sonsino C. M. (2001), Influence of load deformation-controlled multiaxial tests on fatigue
             life to crack initiation, Int. J. Fatigue 23, Elsevier, pp. 159-167.


          Appendix : NOMENCLATURE

                  d          Unit direction vector
                  dc         Unit direction vector of the critical stress component
                  dA4        Degree of multiaxiality
   250   251   252   253   254   255   256   257   258   259   260