Page 317 - Biaxial Multiaxial Fatigue and Fracture
P. 317

The Background of Fatigue Limit Ratio of Torsional Fatigue to Rotating Bending Fatigue in  .__  301

                           Table 5. Classification of fatigue limit ratios z ,,,/  u

                      Characteristics of material     Z ,,,/   (T  I   Example material

            Fatigue   Crack                                   Age-hardened Al-alloy
            limit  does
            not  depend   initiates
            on defects   from
                                                    0.65-0.7  I Cast carbon steel
            Fatigue   Shape                           0.75    Steel with a hole
            limit
            depends  on   of   Connected hole          0.9    Nodular cast iron
            defects   defect   Crack-like defect        1  1  Gray cast iron




           4.  Findley, W.N.  (1957), “Fatigue of Metals Under Combination of Stresses”, Trans. ASME,
              V01.79-6,  1337.
           5.  Firth, P.H.  (1956),  “Fatigue of  Wrought High-Tensile Alloy Steels”, Int.  Conf  Fatigue,
              Inst. Mech. Eng., 462-499.
           6.  McDiarmid, D.L (1991), “A General Criterion for High Cycle Multiaxial Fatigue Failure”,
              Fatigue Fract. Eng. Mater. Struct., Vo1.14-4,429-453.
           7.  Findley, W.N.  (1956), “Theory for Combined Bending and Torsion Fatigue with Data for
             SAEi4340 Steel”, Int. Con$ Fatigue Metal, Inst. Mech. Eng., 150-157.
           8.  Matake, T.  (1976), “A Consideration for Fatigue Limit under Combined Stresses”, Trans.
              Jpn. SOC. Mech. Eng., Vo1.42,  No.359, 1947-1953.
           9.  Peterson, R.E.  (1956), “Torsion and Tension Relations for Slip and Fatigue”, Colloquium
              on Fatigue, International Union of Theoretical and Applied Mechanics, 186-195.
           10. Nisitani,  H.  and  Fukuda, T.  (1994),  “Non-Uniformity of  Local  Strain  Concentration in
              Static Deformation of  Plain Specimens of  Rolled  Round  Carbon  Steel  Bars”, Pr0c.4‘~
              ISOPE, 222-227.
           11. JSME, (1982) JSME Data Book Fatigue of Material  1, 16-73.
           12. Nisijima. S. (1977), National Research Institute for Metals Fatigue  Data  Sheets, Vo1.19,
              119,227.
           13. Nisitani, H. and Kawano, K.  (1972), “Correlation between the Fatigue Limit of a Material
              with Defects and Its Non-Propagating Crack”, Bull. JSME, Vo1.15,  No.82,433-438.
           14.  Nisitani,  H.  and  Murakami,  Y. (1973),  “Part  of  Spheroidal  Graphite  of  Nodular  Iron
              Casting  under  Bending  or  Torsional  Fatigue”,  Research  of  Machine,  Vo1.25,  No.4,
              543-546.
           15. Nisitani, H. and Goto, T. (1976), “Notch Sensitivity in Fatigue of an Al-Alloy”, Trans. Jpn.
              SOC. Mech. Eng., Vo1.42,  N0.361,2666-2672.
           16. Forsyth, P.J.E.  (1963), “Fatigue Damage and Crack Growth in  Aluminium Alloys”, Acta
              Metallurggica, Vol. 11,703-715.
           17. Nisitani,  H.  (1985),  “Behavior of  Small  Cracks  in  Fatigue  and  Relating Phenomena”,
              Current Research on Fatigue Cracks, Jpn. SOC. Mat. Sci., 1-22.
           18. Nisitani, H.  and Takao, K. (1974), “Successive Observations of Fatigue Process in Carbon
              Steel,  7:3-Brass  and  Al-Alloy by  Electron  Microscope”, Trans. Jpn.  SOC. Mech.  Eng.,
              Vo1.40,  N0.340,3254-3266.
           19. Nisitani,  H.  (1968),  “Fatigue under Two-step  Loading in  Electropolished Specimen of
   312   313   314   315   316   317   318   319   320   321   322