Page 438 - Biaxial Multiaxial Fatigue and Fracture
P. 438

422                 c! AUBIN, R QUAEGEBEUR AND S. DEGALLAIX

            25.  Abdul-Latif, A.,  Clavel, M.,  Ferney, V. and  Saanouni, K. (1994) On the modeling of
                nonproportional  cyclic plasticity of  waspaloy Journal  of  Engineering Materials  and
                Technology 116,35-44.
            26.   Tanaka, E. (1994) A nonproportionality parameter and a viscoplastic constitutive model
                taking into account amplitude dependences and memory effects of isotropic hardening
                European Journal of Mechanics A/Solids, 13, 155-173.
            27.  Abdul-Latif,  A.  (1996)  Constitutive  equations  for  cyclic  plasticity  of  waspaloy
                International Journal of Plasticity 12,967-985.
            28.  Armstrong,  P.J.  and  Frederick,  C.O.  (1966)  A  mathematical  representation  of  the
                multiaxial Baushinger effect CEGB Report RL)/B/N731, Berkeley Nucl. Lab.
            29.  Aubin,  V.  (2001)  Plasticit6  cyclique  d'un  acier  inoxydable  aust6no-ferritique  sous
                 chargement biaxial non-proportionnel, Thesis, University of Lille 1, France.
            30.  Pilvin,  P.  (1995)  Simulation  et  Identification  de  Lois  de  comportment -  SiDoLo,
                 Directions for use.
            31.  Cottrell,  A.H.  (1953) Dislocations and Plastic Flow in  Ciystals, Oxford Univ. Press,
                 London.

            Appendix: NOMENCLATURE

             I                         Total strain tensor
                                       Elastic strain tensor
                                       Plastic strain tensor
                                       Stress tensor
             -                         Elasticity matrix
             A
             -
             k                         Initial yield stress
             R                         Isotropic hardening
             -                         Kinematic hardening
             X
             -
             A                         Non-proportionality parameter
             E'                         Plastic strain vector in the deviatoric space (model TANA)
             -
             C                          Structural tensor (model TANA)
             =
             -                          Plastic strain direction (model TANA)
             U
             -                          Centre of the amplitude limit surface (model TANA)
             Y
             4                          Radius of the amplitude limit surface (model TANA)
             E, v, G                    Elastic parameters
             CI, TI,  c2, y2, w, Pm,    Parameters describing the kinematic hardening
             bi, Qi.                    Parameters describing the isotropic hardening
             b2, d, f, % Qm,  Qo, Qi.  n   Parameters describing the extra-hardening (model NP 1)
             ~3, ax, @,  , CO, C,,  Cx, n, tlx   Parameters describing the extra-hardening (model NP2)
             b2, ap, bp, cp, aN, bN,  CN, c,,  ry   Parameters describing the extra-hardening (model TANA)
   433   434   435   436   437   438   439   440   441   442   443